Skip to main content
Log in

Dynamical instability of laminar axisymmetric flows of ideal compressible fluid

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The instability of axisymmetric flows of inviscid compressible fluid with respect to two-dimensional infinitesimal perturbations with the nonconservation of angular momentum is investigated by numerically integrating the differential equations of hydrodynamics. The compressibility is taken into account for a homentropic flow with an adiabatic index varying over a wide range. The problem has been solved for two angular velocity profiles of an initial axisymmetric flow. In the first case, a power-law rotation profile with a finite enthalpy gradient at the flow edges has been specified. For this angular velocity profile, we show that the instability of sonic and surface gravity modes in a nearly Keplerian flow, when a radially variable vorticity exists in the main flow, can be explained by the combined action of the Landau mechanism and mode coupling. We also show that including a radially variable vorticity makes the limiting exponent in the rotation law at which the unstable surface gravity modes vanish dependent on the fluid compressibility. In the second case, a Keplerian rotation law with a quasi-sinusoidal deviation has been specified in such a way that the enthalpy gradient vanished at the flow edges. We have found than the sonic modes are then stabilized and the flow is unstable only with respect to the perturbations that also exist in an incompressible fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Andronov and A. L. Fabrikant, Nonlinear Waves, Ed. by A. V. Gaponov (Nauka, Moscow, 1979), p. 68 [in Russian].

    Google Scholar 

  2. G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge Univ. Press, Cambridge, 1967; Mir, Moscow, 1973).

    MATH  Google Scholar 

  3. O. M. Blaes and W. Glatzel, Mon. Not. R. Astron. Soc. 220, 253 (1986).

    ADS  Google Scholar 

  4. R. A. Cairns, J. Fluid Mech. 92, 1 (1979).

    Article  MATH  ADS  Google Scholar 

  5. C. M. Churilov and I. G. Shukhman, Astron. Tsirk., No. 1157, 1 (1981).

  6. W. Glatzel, Mon. Not. R. Astron. Soc. 225, 227 (1987a).

    MATH  ADS  MathSciNet  Google Scholar 

  7. W. Glatzel, Mon. Not. R. Astron. Soc. 228, 77 (1987b).

    MATH  ADS  Google Scholar 

  8. W. Glatzel, Mon. Not. R. Astron. Soc. 231, 795 (1988).

    ADS  Google Scholar 

  9. P. Goldreich and R. Narayan, Mon. Not. R. Astron. Soc. 213, 7 (1985).

    ADS  Google Scholar 

  10. P. Goldreich, J. Goodman, and R. Narayan, Mon. Not. R. Astron. Soc. 221, 339 (1986).

    MATH  ADS  Google Scholar 

  11. N. N. Gorkavyi and A. M. Fridman, Physics of Planetary Rings (Nauka, Moscow, 1994) [in Russian].

    Google Scholar 

  12. M. Jaroszynski, Acta Astron. 38, 289 (1988).

    ADS  Google Scholar 

  13. S. Kato, Publ. Astron. Soc. Jpn. 39, 645 (1987).

    ADS  Google Scholar 

  14. R. Kleiber and W. Glatzel, Mon. Not. R. Astron. Soc. 303, 107 (1999).

    Article  ADS  Google Scholar 

  15. Y. Kojima, Mon. Not. R. Astron. Soc. 236, 589 (1989).

    ADS  Google Scholar 

  16. C. C. Lin, Q. Appl. Math. 3, 117 (1945).

    MATH  Google Scholar 

  17. R. Narayan, P. Goldreich, and J. Goodman, Mon. Not. R. Astron. Soc. 228, 1 (1987).

    MATH  ADS  Google Scholar 

  18. J. C. B. Papaloizou and J. E. Pringle, Mon. Not. R. Astron. Soc. 208, 721 (1984).

    MATH  ADS  Google Scholar 

  19. J. C. B. Papaloizou and J. E. Pringle, Mon. Not. R. Astron. Soc. 213, 799 (1985).

    MATH  ADS  Google Scholar 

  20. J. C. B. Papaloizou and J. E. Pringle, Mon. Not. R. Astron. Soc. 225, 267 (1987).

    MATH  ADS  Google Scholar 

  21. Lord Rayleigh, Proc. London Math. Soc. 11, 57 (1880).

    Article  Google Scholar 

  22. Lord Rayleigh, Proc. R. Soc. London, Ser. A 93, 143 (1916).

    Google Scholar 

  23. G. I. Savonije and M. H. M. Heemskerk, Astron. Astrophys. 240, 191 (1990).

    MATH  ADS  Google Scholar 

  24. M. Sekiya and S. Miyama, Mon. Not. R. Astron. Soc. 234, 107 (1988).

    MATH  ADS  Google Scholar 

  25. Yu. A. Stepanyants and A. L. Fabrikant, Propagation of Waves in Shear Flows (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  26. A. V. Timofeev, Usp. Fiz. Nauk 102, 185 (1970) [Sov. Phys. Usp. 13, 632 (1970)].

    Google Scholar 

  27. A. V. Timofeev, Fiz. Plazmy 5, 705 (1979) [Sov. J. Plasma Phys. 5, 398 (1979)].

    Google Scholar 

  28. V. V. Zhuravlev and N. I. Shakura, Astron. Lett. 303, 604 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Zhuravlev.

Additional information

Original Russian Text © V.V. Zhuravlev, N.I. Shakura, 2007, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2007, Vol. 33, No. 10, pp. 754–774.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuravlev, V.V., Shakura, N.I. Dynamical instability of laminar axisymmetric flows of ideal compressible fluid. Astron. Lett. 33, 673–691 (2007). https://doi.org/10.1134/S1063773707100052

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773707100052

PACS numbers

Key words

Navigation