Skip to main content
Log in

Hydrodynamic processes of angular momentum transport in the interior of a rotating massive hydrogen-burning star

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The evolution of a rotating star with a mass of 16M at the hydrogen burning phase is considered together with the hydrodynamic processes of angular momentum transport in its interior. Shear turbulence is shown to limit the amplitude of the latitudinal variations in mean molecular weight on a surface of constant pressure in a layer with variable chemical composition. The resulting nonuniformity in the mean molecular weight distribution and the turbulent energy transport along the surface of constant pressure reduce the absolute value of the meridional circulation velocity. Nevertheless, meridional circulation remains the main mechanism of angular momentum transport in the radial direction in a layer with variable chemical composition. The intensity of the processes of angular momentum transport by meridional circulation and shear turbulence is determined by the angular momentum of the star. At a fairly high angular momentum, more specifically, at J = 3.69 × 1052 g cm2 s−1, the star during the second half of the hydrogen-burning phase in its convective core has characteristics typical of classical early Be stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. R. Cranmer, Astrophys. J. 634, 585 (2005).

    Article  ADS  Google Scholar 

  2. K. de Jager, The Brightest Stars (Reidel, Dordrecht, 1980; Mir, Moscow, 1984).

    Google Scholar 

  3. A. S. Eddington, Observatory 48, 73 (1925).

    ADS  Google Scholar 

  4. J. Fabregat and J. M. Torrejon, Astron. Astrophys. 357, 451 (2000).

    ADS  Google Scholar 

  5. Y. Fremat, J. Zorec, A. M. Hubert, et al., Astron. Astrophys. 440, 305 (2005).

    Article  ADS  Google Scholar 

  6. W.-Y. Law, Astron. Astrophys. 102, 178 (1980).

    ADS  Google Scholar 

  7. A. Maeder, Astron. Astrophys. 399, 263 (2003).

    Article  ADS  Google Scholar 

  8. A. Maeder and J.-P. Zahn, Astron. Astrophys. 334, 1000 (1998).

    ADS  Google Scholar 

  9. L. Mestel, Mon. Not. R. Astron. Soc. 113, 716 (1953).

    MATH  ADS  Google Scholar 

  10. B. Paczynski, Acta Astron. 20, 47 (1970).

    ADS  Google Scholar 

  11. E. I. Staritsin, Astron. Zh. 76, 678 (1999) [Astron. Rep. 43, 592 (1999)].

    Google Scholar 

  12. E. I. Staritsin, Astron. Zh. 78, 541 (2001) [Astron. Rep. 45, 467 (2001)].

    Google Scholar 

  13. E. I. Staritsin, Astron. Zh. 82, 710 (2005) [Astron. Rep. 49, 634 (2005)].

    Google Scholar 

  14. S. Talon and J.-P. Zahn, Astron. Astrophys. 317, 749 (1997).

    ADS  Google Scholar 

  15. J.-L. Tassoul, Theory of Rotating Star (Princeton Univ. Press, Princeton, 1979; Mir, Moscow, 1982).

    Google Scholar 

  16. H. Vogt, Astron. Nachr. 223, 229 (1925).

    ADS  Google Scholar 

  17. J.-P. Zahn, Astron. Astrophys. 265, 115 (1992).

    ADS  Google Scholar 

  18. H. Zeipel, Mon. Not. R. Astron. Soc. 84, 665 (1924).

    ADS  Google Scholar 

  19. J. Zorec and D. Briot, Astron. Astrophys. 245, 150 (1991).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.I. Staritsin, 2007, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2007, Vol. 33, No. 2, pp. 111–122.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Staritsin, E.I. Hydrodynamic processes of angular momentum transport in the interior of a rotating massive hydrogen-burning star. Astron. Lett. 33, 93–102 (2007). https://doi.org/10.1134/S106377370702003X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377370702003X

PACS numbers

Key words

Navigation