Skip to main content
Log in

Properties of voids in the 2dFGRS galaxy survey

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

A method for detecting voids in the galaxy distribution is presented. Using this method, we have identified 732 voids with a radius of the seed sphere R seed > 4.0h −1 Mpc in a volume-limited sample of galaxies from the southern part of the 2dFGRS survey. 110 voids with R seed > 9.0h −1 Mpc have a positive significance. The mean volume of such voids is ∼19 × 103 h −3 Mpc3. Voids with R seed > 9.0h −1 Mpc occupy 55% of the sample volume. We construct a dependence of the volumes of all the identified voids on their ranks and determine parameters of the galaxy distribution. The dependence of the volume of voids on their rank is consistent with a fractal model (Zipf’s power law) of the galaxy distribution with a fractal dimension D ≈ 2.1 (given the uncertainty in determining the dimension using our method and the results of a correlation analysis) up to scales of ∼25h −1 Mpc with the subsequent transition to homogeneity. The directions of the greatest elongations of voids and their ellipticities (oblateness) are determined from the parameters of equivalent ellipsoids. The directions of the greatest void elongations have an enhanced concentration to the directions perpendicular to the line of sight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aikio and P. Mahonen, Astrophys. J. 497, 534 (1998).

    Article  ADS  Google Scholar 

  2. Y. Barishev and P. Teerikorpi, astro-ph/0505185 (2005).

  3. A. Berlind and D. H. Weinberg, Astrophys. J. 575, 587 (2002).

    Article  ADS  Google Scholar 

  4. P. H. Coleman and L. Pietronero, Phys. Rep. 213, 311 (1992).

    Article  ADS  Google Scholar 

  5. M. Colles, G. Dalton, S. Maddox, et al. (The 2dFGRS Team), Mon. Not. R. Astron. Soc. 328, 1039 (2001).

    Article  ADS  Google Scholar 

  6. M. Colles, B. Peterson, C. Jackson, et al. (The 2dFGRS Team) astro-ph/0306581 (2003).

  7. D. J. Croton, M. Colles, E. Gaztanaga, et al., Mon. Not. R. Astron. Soc. 352, 828 (2004); astro-ph/0401406 (2004).

    Article  ADS  Google Scholar 

  8. J. Einasto, M. Joeveer, and E. Saar, Mon. Not. R. Astron. Soc. 193, 353 (1980).

    ADS  Google Scholar 

  9. H. El-Ad and T. Piran, Astrophys. J. 491, 421 (1997).

    Article  ADS  Google Scholar 

  10. J. Gaite, astro-ph/0510328 (2005).

  11. J. Gaite, private communication (2006).

  12. J. Gaite and S. C. Manrubia, Mon. Not. R. Astron. Soc. 335, 977 (2002); astro-ph/0205188 (2002).

    Article  ADS  Google Scholar 

  13. S. Gottlober, E. L. Locas, A. Klypin, and Y. Hoffman, astro-ph/0305393 (2003).

  14. D. W. Hogg, astro-ph/9905116 (1999).

  15. F. Hoyle and M. S. Vogeley, Astrophys. J. 566, 641 (2002); astro-ph/0109357.

    Article  ADS  Google Scholar 

  16. F. Hoyle and M. S. Vogeley, Astrophys. J. 607, 751 (2004); astro-ph/0312533.

    Article  ADS  Google Scholar 

  17. R. P. Kirshner, A. Jr. Oemler, P. L. Schechter, and S. A. Shectman, Astrophys. J. 248, L57 (1981).

    Article  ADS  Google Scholar 

  18. P. Norberg, S. Cole, C. M. Baugh, et al., Mon. Not. R. Astron. Soc. 336, 907 (2002); astro-ph/0111011 (2001).

    Article  ADS  Google Scholar 

  19. G. Paladin and A. Vulpiani, Phys. Rep. 156, 147 (1987).

    Article  MathSciNet  ADS  Google Scholar 

  20. S. G. Patiri, J. Betancort-Rijo, F. Prada, et al., submitted to Mon. Not. R. Astron. Soc.; astro-ph/0506668 (2005).

  21. P. J. E. Peebles, Astrophys. J. 557, 495 (2001).

    Article  ADS  Google Scholar 

  22. M. Plionis and S. Basilakos, Mon. Not. R. Astron. Soc. 330, 399 (2002).

    Article  ADS  Google Scholar 

  23. H. J. Rood, Ann. Rev. Astron. Astrophys. 26, 245 (1988).

    Article  ADS  Google Scholar 

  24. B. S. Ryden and A. L. Melott, Astrophys. J. 470, 160 (1996); astro-ph/9510108.

    Article  ADS  Google Scholar 

  25. A. V. Tikhonov, Pis’ma Astron. Zh. 31, 883 (2005) [Astron. Lett. 31, 787 (2005)].

    MathSciNet  Google Scholar 

  26. A. V. Tikhonov, D. I. Makarov, and A. I. Kopylov, Bull. Spec. Aastrofiz. Obs., Russ. Akad. Sci. 50, 39 (2000); astro-ph/0106276 (2001).

    ADS  Google Scholar 

  27. S. Shandarin, H. A. Feldman, K. Heitmann, and S. Habib, Mon. Not. R. Astron. Soc. 367, 1629 (2006).

    Article  ADS  Google Scholar 

  28. G. K. Zipf, Human Behavior and the Principle of Least Effort (Addison-Wesley, Massachusetts, 1949).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Tikhonov, 2006, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2006, Vol. 32, No. 11, pp. 809–816.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tikhonov, A.V. Properties of voids in the 2dFGRS galaxy survey. Astron. Lett. 32, 727–733 (2006). https://doi.org/10.1134/S1063773706110028

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773706110028

PACS numbers

Key words

Navigation