Skip to main content
Log in

Investigation of the polarization observed in infrared absorption bands in the spectra of protostars

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We investigate the linear polarization in the two deepest infrared absorption bands observed in the spectra of protostars, the water-ice band with the center near 3.1 µm and the silicate band with the center near 9.7 µm, using a core-mantle confocal spheroid model with various axial ratios a/b and relative volumes of the core material. We consider the effect of the grain shape, structure, and type (oblate, prolate) as well as the type of grain orientation and its location relative to the incident ray of light and the magnetic field direction on the central wavelengths of the two bands and the polarizability in the bands. We have found that the observed relationships between the polarizability in the bands and the ratio of their optical depths at the band centers can be explained if we choose slightly oblate or prolate particles (a/b ≲2 for the silicate band and 1.3 ≲ a/b ≲ 2 for the ice band). For any type of orientation, the core-mantle confocal spheroid model requires different axial ratios for the ice and silicate bands to account for the observed polarization. We show that picket-fence-oriented particles can explain the observed polarization in the ice band at angles α between the particle rotation axis and the incident ray ≳30° and in the silicate band at any α. Perfectly Davis-Greenstein-oriented particles can explain the observed polarization in the ice band at angles Ω between the line of sight and the magnetic field direction ≳60° and in the silicate band at any Ω. The orientation parameter ζ (imperfect Davis-Greenstein orientation) must be no more than 0.5 (oblate particles) and 0.1 (prolate particles) for the ice band and can be arbitrary for the silicate band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Aannestad and E. Purcell, Ann. Rev. Astron. Astrophys. 11, 309 (1973).

    Article  ADS  Google Scholar 

  2. S. Asano and G. Yamamoto, Appl. Opt. 14, 29 (1975).

    ADS  Google Scholar 

  3. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  4. T. Y. Brooke, K. Sellgren, and R. G. Smith, Astrophys. J. 459, 209 (1996).

    Article  ADS  Google Scholar 

  5. E. Dartois and L. D’Hendecourt, Astron. Astrophys. 365, 144 (2001).

    Article  ADS  Google Scholar 

  6. L. Davis and J. Greenstein, Astrophys. J. 114, 206 (1951).

    Article  ADS  Google Scholar 

  7. A. Z. Dolginov, Yu. N. Gnedin, N. A. Silant’ev, Propagation and Polarization of Radiation in Cosmic Medium (Mir, Moscow, 1979) [in Russian].

    Google Scholar 

  8. B. Draine and H. Lee, Astrophys. J. 285, 89 (1984).

    Article  ADS  Google Scholar 

  9. V. G. Farafonov, Differ. Uravn. 19, 1765 (1983).

    MathSciNet  Google Scholar 

  10. V. Farafonov, Opt. Spectrosc. 76, 79 (1994).

    ADS  Google Scholar 

  11. V. Farafonov, N. Voshchinnikov, and V. Somsikov, Appl. Opt. 35, 5412 (1996).

    Article  ADS  Google Scholar 

  12. G. E. Forsythe, M. A. Malcolm, and C. B. Moler, Computer Methods for Mathematical Computations (Prentice-Hall, Englewood Cliffs, N.J., 1997; Mir, Moscow, 1980).

    MATH  Google Scholar 

  13. M. Grinberg, Interstellar Grains (Univ. of Chicago Press, Chicago, 1968; Mir, Moscow, 1970).

    Google Scholar 

  14. Th. Henning, V. Il’in, N. Krivova, et al., Astron. Astrophys., Suppl. Ser. 136, 405 (1999).

    Article  ADS  Google Scholar 

  15. S. Hong and J. Greenberg, Astron. Astrophys. 88, 194 (1980).

    ADS  Google Scholar 

  16. J. Hough, D. Whittet, S. Sato, et al., Mon. Not. R. Astron. Soc. 241, 71 (1989).

    ADS  Google Scholar 

  17. A. Il’in, Rev. Mex. Astron. Astrophys. 29, 218 (1994).

    ADS  Google Scholar 

  18. S. Kim and P. Martin, Astrophys. J. 442, 172 (1995).

    Article  ADS  Google Scholar 

  19. N. Kobayashi, T. Nagata, M. Tamura, et al., Astrophys. J. 517, 256 (1999).

    Article  ADS  Google Scholar 

  20. H. Lee and B. Drain, Astrophys. J. 290, 211 (1985).

    Article  ADS  Google Scholar 

  21. P. Martin, Cosmic Dust (Oxford Univ. Press., Oxford, 1978).

    Google Scholar 

  22. M. I. Mishchenko, Pis’ma Astron. Zh. 15, 694 (1989) [Sov. Astron. Lett. 15, 299 (1989)].

    ADS  Google Scholar 

  23. J. O’Donnel, Astrophys. J. 437, 262 (1994).

    Article  ADS  Google Scholar 

  24. T. Onaka, Ann. Tokyo Astron. Obs. 18, 1 (1980).

    ADS  Google Scholar 

  25. M. E. Palumbo, Astrophys. J. 479, 839 (1997).

    Article  ADS  Google Scholar 

  26. M. E. Palumbo, Astrophys. J. 534, 801 (2000).

    Article  ADS  Google Scholar 

  27. F. R. S. Rayleigh, Philos. Mag. 12, 81 (1881).

    Google Scholar 

  28. C. Rogers and P. Martin, Astrophys. J. 228, 450 (1979).

    Article  ADS  Google Scholar 

  29. C. Smith, C. Wright, D. Aitken, et al., Mon. Not. R. Astron. Soc. 312, 327 (2000).

    Article  ADS  Google Scholar 

  30. V. V. Somsikov, Pis’ma Astron. Zh. 22, 696 (1996) [Astron. Lett. 22, 625 (1996)].

    Google Scholar 

  31. V. Somsikov and N. Voshchinnikov, Astron. Astrophys. 345, 315 (1999).

    ADS  Google Scholar 

  32. L. Spitzer, Jr., Physical Processes in Interstellar Medium (Wiley, New York, 1978; Mir, Moscow, 1981).

    Google Scholar 

  33. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957; Inostrannaya Literatura, Moscow, 1961).

    Google Scholar 

  34. N. V. Voshchinnikov, Optics of Interstellar Dust (St. Petersburg, 1991) [in Russian].

  35. N. V. Voshchinnikov, Astrophys. Space Phys. 12, 1, (2002).

    Google Scholar 

  36. N. V. Voshchinnikov, Interstellar Dust (Mir, Moscow, 1986) [in Russian].

    Google Scholar 

  37. N. V. Voshchinnikov, Astron. Zh. 67, 1061 (1990) [Sov. Astron. 34, 535 (1990)].

    ADS  Google Scholar 

  38. N. V. Voshchinnikov and V. G. Farafonov, Vestn. Leningr. Univ. 1, 90 (1987).

    Google Scholar 

  39. N. V. Voshchinnikov and V. G. Farafonov, Opt. Spektrosk. 58, 135 (1985a) [Opt. Spectrosc. 58, 81 (1985a)].

    Google Scholar 

  40. N. V. Voshchinnikov and V. G. Farafonov, Vestn. Leningr. Univ. 8, 86 (1985b).

    Google Scholar 

  41. N. V. Voshchinnikov and V.G. Farafonov, Opt. Spektrosk. 59, 1250 (1985d) [Opt. Spectrosc. 59, 750 (1985c)].

    Google Scholar 

  42. N. V. Voshchinnikov and V. G. Farafonov, Opt. Spektrosk. 60, 1026 (1986) [Opt. Spectrosc. 60, 635 (1986)].

    Google Scholar 

  43. N. Voshchinnikov and V. Farafonov, Astrophys. Space Sci. 204, 19 (1993).

    Article  ADS  Google Scholar 

  44. N. V. Voshchinnikov A. E. Il’in, and V. V. Il’in, Vestn. Leningr. Univ. 15, 70 (1985).

    Google Scholar 

  45. N. V. Voshchinnikov A. E. Il’in, and V. V. Il’in, Astrofizika 24, 523 (1986) [Astrophys. 24, 299 (1986)].

    ADS  Google Scholar 

  46. J. R. Wait, Can. J. Phys. 33, 189 (1955).

    MATH  MathSciNet  Google Scholar 

  47. S. P. Willner, F. C. Gillett, T. L. Herner, et al., Astrophys. J. 253, 174 (1982).

    Article  ADS  Google Scholar 

  48. Y. Yao, M. Ishi, T. Nagata, et al., Astrophys. J. 500, 320 (1998).

    Article  ADS  Google Scholar 

  49. T. Zinov’eva, Astron. Astrophys. Trans. 22, 51 (2003).

    Article  Google Scholar 

  50. T. V. Zinov’eva, Opt. Spektrosk. 94, 451 (2004) [Opt. Spectrosc. 97, 433 (2004)].

    Google Scholar 

  51. T. V. Zinov’eva, Astron. Zh. 82, 466 (2005a) [Astron. Rep. 49, 417 (2005a)].

    Google Scholar 

  52. T. V. Zinov’eva, Pis’ma Astron. Zh. 31, 513 (2005b) [Astron. Lett. 31, 458 (2005b)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © T.V. Zinov’eva, 2006, published in Pis’ma v Astronomicheskiĭ Zhurnal, 2006, Vol. 32, No. 10, pp. 748–766.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zinov’eva, T.V. Investigation of the polarization observed in infrared absorption bands in the spectra of protostars. Astron. Lett. 32, 671–687 (2006). https://doi.org/10.1134/S1063773706100033

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773706100033

PACS numbers

Key words

Navigation