Skip to main content
Log in

Analysis of the Effect of Earth’s Equatorial Ellipticity on the Existence and Stability of the Lagrangian Points in the Earth–Moon–Sun System

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We have investigated existence of Lagrangian points and analyzed stability in the Earth–Moon–Sun system including the effect of Earth’s equatorial ellipticity parameter \(\gamma \). First we have expressed the equations of motion of the Moon in the spherical coordinate system using the potential of the Earth. We observed that there exist collinear and non-collinear Lagrangian points for different values of Earth’s equatorial ellipticity \(\gamma \). We also analyzed the effect of \(\gamma \) on the stability of Lagrangian points including the effect of \(\gamma \). We observed that all the Lagrangian points are unstable for different values of \(\gamma \). Finally, we have drawn and analyzed zero velocity curves by taking different values of Jacobi constants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. M. Ammar, Astrophys. Space Sci. 313, 393 (2008).

    Article  ADS  Google Scholar 

  2. A. Ibrahim, M. Ismail, and K. Khalil, Int. J. Sci. Eng. Res. 7 (2016).

  3. A. Mittal, R. Aggarwal, M. S. Suraj, and V. S. Bisht, Astrophys. Space Sci. 361, 1 (2016).

    Article  Google Scholar 

  4. E. I. Abouelmagd, F. Alzahrani, J. Guirao, and A. Hobiny, J. Nonlinear Sci. Appl. 9, 1716 (2016).

    Article  MathSciNet  Google Scholar 

  5. M. Hassan, S. Kumari, M. A. Hassan, et al., Int. J. Astron. Astrophys. 7, 45 (2017).

    Article  Google Scholar 

  6. K. Shalini, M. S. Suraj, and R. Aggarwal, J. Astronaut. Sci. 64, 18 (2017).

    Article  ADS  Google Scholar 

  7. H. H. Selim, J. L. Guirao, and E. I. Abouelmagd, Discrete Contin. Dyn. Syst. 12, 703 (2019).

    Google Scholar 

  8. D. Kumar, B. Kaur, S. Chauhan, and V. Kumar, Int. J. Non-Lin. Mech. 109, 182 (2019).

    MATH  Google Scholar 

  9. J. Singh and S. O. Omale, Astrophys. Space Sci. 364, 6 (2019).

    Article  ADS  Google Scholar 

  10. S. Yadav, V. Kumar, and R. Aggarwal, Nonlin. Dyn. Syst. Theory 19, 537 (2019).

    Google Scholar 

  11. A. A. Jency and R. K. Sharma, Int. J. Adv. Astron. 7, 57 (2019).

    Article  Google Scholar 

  12. M. S. Suraj, A. Mittal, K. Pal, and D. Mittal, Nonlin. Dyn. Syst. Theory 20, 439 (2020).

    Google Scholar 

  13. B. Kaur, S. Kumar, S. Chauhan, and D. Kumar, Appl. Appl. Math. 15, 22 (2020).

    CAS  Google Scholar 

  14. B. Kaur, S. Kumar, and R. Aggarwal, Appl. Appl. Math. 17, 6 (2022).

    Google Scholar 

  15. S. Yadav, M. Kumar, V. Kumar, and P. K. Behera, New Astron., 101887 (2022).

  16. L. K. Bairwa, A. K. Pal, R. Kumari, S. Alhowaity, and E. I. Abouelmagd, Fract. Fraction. 6, 321 (2022).

    Article  Google Scholar 

  17. S. Yadav, M. Kumar, and R. Aggarwal, Appl. Appl. Math. 17 (2022).

  18. H. K. Khalil, Nonlinear Systems (Prentice Hall, Upper Saddle River, 2002).

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are thankful to the Centre for Fundamental Research in Space Dynamics and Celestial Mechanics (CFRSC) for providing all facilities for this research work.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukesh Kumar.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

APPENDIX A

$${{K}_{1}} = \cos {{\phi }_{m}} - \cos {{\phi }_{m}}\cos \epsilon ,$$
$${{K}_{2}} = \cos {{\phi }_{m}} + \cos {{\phi }_{m}}\cos \epsilon ,$$
$${{K}_{3}} = 2\sin {{\phi }_{m}},$$
$${{K}_{4}} = \frac{{{{{\cos }}^{2}}{{\phi }_{m}}}}{2} - {{\cos }^{2}}{{\phi }_{m}}\cos \epsilon + \frac{{{{{\cos }}^{2}}{{\phi }_{m}}{{{\cos }}^{2}}\epsilon }}{2},$$
$${{K}_{5}} = \frac{{{{{\cos }}^{2}}{{\phi }_{m}}}}{2} + {{\cos }^{2}}{{\phi }_{m}}\cos \epsilon + \frac{{{{{\cos }}^{2}}{{\phi }_{m}}{{{\cos }}^{2}}\epsilon }}{2},$$
$${{K}_{6}} = {{\cos }^{2}}{{\phi }_{m}} - {{\cos }^{2}}{{\phi }_{m}}{{\cos }^{2}}\epsilon ,$$
$${{K}_{7}} = {{\cos }^{2}}{{\phi }_{m}} - {{\cos }^{2}}{{\phi }_{m}}{{\cos }^{2}}\epsilon - 2{{\sin }^{2}}\epsilon {{\sin }^{2}}{{\phi }_{m}},$$
$${{K}_{8}} = - 2\sin \epsilon \sin {{\phi }_{m}}\cos {{\phi }_{m}}(1 - \cos \epsilon ),$$
$${{K}_{9}} = 2\sin \epsilon \sin {{\phi }_{m}}\cos {{\phi }_{m}}(1 + \cos \epsilon ),$$
$${{K}_{{10}}} = - 4\sin \epsilon \sin {{\phi }_{m}}\cos {{\phi }_{m}}\cos \epsilon ,$$
$${{K}_{{11}}} = {{\cos }^{2}}{{\phi }_{m}} + {{\cos }^{2}}{{\phi }_{m}}{{\cos }^{2}}\epsilon + {{\sin }^{2}}\epsilon {{\sin }^{2}}{{\phi }_{m}}.$$

APPENDIX B

$${{M}_{1}} = \frac{{ - \cos {{\phi }_{m}}}}{8} + \frac{{\cos {{\phi }_{m}}\cos \epsilon }}{4},$$
$${{M}_{2}} = \frac{{ - \cos {{\phi }_{m}}}}{4},$$
$${{M}_{3}} = \frac{{ - \cos {{\phi }_{m}}}}{8} - \frac{{\cos {{\phi }_{m}}\cos \epsilon }}{4},$$
$${{M}_{4}} = \frac{{\sin \epsilon \cos \epsilon }}{4}(1 + \sin {{\phi }_{m}}),$$
$${{M}_{5}} = \frac{{\sin \epsilon \cos \epsilon }}{4}(\sin {{\phi }_{m}} - 1),$$
$${{M}_{6}} = \frac{{ - 3\cos {{\phi }_{m}}{{{\cos }}^{2}}\epsilon }}{8},$$
$${{M}_{7}} = \frac{{\cos {{\phi }_{m}}{{{\cos }}^{2}}\epsilon }}{8},$$
$${{M}_{8}} = \frac{{\cos {{\phi }_{m}}{{{\cos }}^{2}}\epsilon }}{8},$$
$${{M}_{9}} = \frac{{ - \sin \epsilon \cos \epsilon \sin {{\phi }_{m}}}}{2}.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, M., Yadav, S. Analysis of the Effect of Earth’s Equatorial Ellipticity on the Existence and Stability of the Lagrangian Points in the Earth–Moon–Sun System. Astron. Rep. 67, 1489–1498 (2023). https://doi.org/10.1134/S1063772923340036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923340036

Keywords:

Navigation