Skip to main content
Log in

Magnetized Advective Accretion Disks and Jets: Harmpi Simulation

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

An optically thin advective accretion disk appears to be indispensable to explain hard-state of black hole sources. Any transport of matter therein is assumed to be led by (modified) \(\alpha \)-viscosity when the magnetic field is weak. We explore how large scale stronger magnetic field helps in transporting angular momentum in disk and outflow/jet, depending on the field geometry and plasma-\(\beta \) parameter, basically by underlying magnetic shear over \(\alpha \)-viscosity. Interestingly, while above a critical accretion rate the accretion disk turns out to be thermally unstable, in the presence of stronger magnetic fields the disk regains its stability. In the present work, we establish this by numerical simulation based on HARMPI, while the underlying theory was established by one of us earlier. This magnetically arrested advective accretion disk (MA-AAF) in the optically thin regime has far reaching implications including the explanation of ultra-luminous X-ray sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. R. P. Fender, T. M. Belloni, and E. Gallo, Mon. Not. R. Astron. Soc. 355, 1105 (2004).

    Article  ADS  CAS  Google Scholar 

  2. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  3. S. A. Balbus and J. F. Hawley, Astrophys. J. 376, 214 (1991).

    Article  ADS  Google Scholar 

  4. M. J. Rees, M. C. Begelman, R. D. Blandford, and E. S. Phinney, Nature (London, U.K.) 295, 17 (1982).

    Article  ADS  CAS  Google Scholar 

  5. R. Narayan and I. Yi, Astrophys. J. 452, 710 (1995).

    Article  ADS  Google Scholar 

  6. S. Chakrabarti and L. G. Titarchuk, Astrophys. J. 455, 623 (1995).

    Article  ADS  Google Scholar 

  7. R. D. Blandford and M. C. Begelman, Mon. Not. R. Astron. Soc. 303, L1 (1999).

    Article  ADS  Google Scholar 

  8. R. Narayan, I. V. Igumenshchev, and M. A. Abramowicz, Astrophys. J. 539, 798 (2000).

    Article  ADS  Google Scholar 

  9. S. R. Rajesh and B. Mukhopadhyay, Mon. Not. R. Astron. Soc. 402, 961 (2010).

    Article  ADS  Google Scholar 

  10. H. Feng and P. Kaaret, Astrophys. J. 696, 1712 (2009).

    Article  ADS  CAS  Google Scholar 

  11. R. Soria, G. Risaliti, M. Elvis, G. Fabbiano, S. Bianchi, and Z. Kuncic, Astrophys. J. 695, 1614 (2009).

    Article  ADS  CAS  Google Scholar 

  12. R. Soria and D. S. Wong, Mon. Not. R. Astron. Soc. 372, 1531 (2006).

    Article  ADS  CAS  Google Scholar 

  13. H. Feng, F. Rao, and P. Kaaret, Astrophys. J. 710, L137 (2010).

    Article  ADS  Google Scholar 

  14. C. F. Gammie, J. C. McKinney, and G. Tòth, Astrophys. J. 589, 444 (2003).

    Article  ADS  Google Scholar 

  15. B. van Leer, J. Comput. Phys. 32, 101 (1979).

    Article  ADS  Google Scholar 

  16. A. Harten, J. Comput. Phys. 49, 357 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  17. B. Mukhopadhyay, Astrophys. J. 581, 427 (2002).

    Article  ADS  Google Scholar 

  18. T. Mondal and B. Mukhopadhyay, Mon. Not. R. Astron. Soc. 495, 350 (2020).

    Article  ADS  CAS  Google Scholar 

  19. T. Mondal and B. Mukhopadhyay, Mon. Not. R. Astron. Soc. Lett. 482, L24 (2018).

    Article  ADS  Google Scholar 

  20. L. G. Fishbone and V. Moncrief, Astrophys. J. 207, 962 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  21. R. D. Blandford and R. L. Znajek, Mon. Not. R. Astron. Soc. 179, 433 (1977).

    Article  ADS  Google Scholar 

  22. J. C. McKinney, Astrophys. J. 630, L5 (2005).

    Article  ADS  Google Scholar 

  23. G. S. Bisnovatyi-Kogan and A. A. Ruzmaikin, Astrophys. Space Sci. 28, 45 (1974).

    Article  ADS  Google Scholar 

  24. V. S. Beskin, Phys. Usp. 53, 1199 (2010).

    Article  ADS  CAS  Google Scholar 

  25. M. Y. Piotrovich, N. A. Silant’ev, Y. N. Gnedin, and T. M. Natsvlishvili, Astrophys. Bull. 66, 320 (2011).

    Article  ADS  Google Scholar 

  26. A.-K. Baczko et al., Astron. Astrophys. 593, A47 (2016).

    Article  Google Scholar 

Download references

Funding

BM thanks SERB, India, with Ref. no. CRG/2022/003460, for partial support towards this research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rohan Raha, Banibrata Mukhopadhyay, Koushik Chatterjee or S. M. Gopika.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Paper presented at the Fifth Zeldovich meeting, an international conference in honor of Ya.B. Zeldovich held in Yerevan, Armenia on June 12–16, 2023. Published by the recommendation of the special editors: R. Ruffini, N. Sahakyan and G.V. Vereshchagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raha, R., Mukhopadhyay, B., Chatterjee, K. et al. Magnetized Advective Accretion Disks and Jets: Harmpi Simulation. Astron. Rep. 67 (Suppl 2), S189–S198 (2023). https://doi.org/10.1134/S1063772923140172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923140172

Keywords:

Navigation