Skip to main content
Log in

Estimation of the Pulsar Braking Index Using the Evolution of the Rotational Kinetic Energy Loss Rate. Testing on the Crab Pulsar

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The slowdown mechanism of rotating neutron stars (NSs) has long been an important topic in pulsar astronomy, which is still an open question of detailed debate. It is widely understood that it arises from the loss of the rotational kinetic energy (\(E\)) through the magnetic dipole radiation (MDR). This simple model would lead to a relation \(\dot {\Omega } \propto {{\Omega }^{3}}\), where \(\Omega \) and \(\dot {\Omega }\) are the spin angular velocity and its time derivative. However, a sole MDR torque may be oversimple and incorrect, and the above relation could be written in a more general form \(\dot {\Omega } = - K{{\Omega }^{n}}\), where \(K\) is a constant, and \(n\) is known as the braking index, being 3 for the MDR model. The \(n\) value of a pulsar could in principle be directly measured through its \(\ddot {\Omega }\) observation. However, it is difficult to measure the values of \(\ddot {\Omega }\) due to the effects of the timing noise or glitches, making the sample of pulsars with reliable \(n\) observations is very tiny (the number ~10). Therefore, this study aims to estimate a pulsar’s \(n\) value without relying on the observation of \(\ddot {\Omega }\), by employing a simple and convenient \(\dot {E}\) evolution model. In which, the information about the real age \({{t}_{o}}\) of the target pulsar is required as input. Here, we applied this \(\dot {E}\) model to the Crab pulsar since it is the only NS source with a known age. Our results inferred its \(n\) value to be \(2.3 < n < 2.7\), and also constrained several of its initial parameters, e.g., its initial spin period and energy loss rate were limited to be \(0.0180 < {{P}_{i}}\) [s] \( < 0.0197\) and \(2.56 \times {{10}^{{39}}} < {{\dot {E}}_{i}}\) [erg/s] \( < 4.38 \times {{10}^{{39}}}\), respectively. Our above estimated \(n\) value for the Crab pulsar is consistent with the observation based on its \(\ddot {\Omega }\) measurement, as \({{n}_{{{\text{obs}}}}} = 2.51 \pm 0.01\). The departure of its \(n\) value from the canonical 3 may be interpreted by a combination of a particle wind flow torque and an increase of the magnetic inclination angle, along with the classical MDR model. Our method may be applied to approximately evaluate the \(n\) values for more Crab-like pulsars in the future if their true ages can be accurately measured through a new methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Notes

  1. http://snrcat.physics.umanitoba.ca/SNRtable.php

REFERENCES

  1. A. Hewish, S. J. Bell, J. D. H. Pilkington, P. F. Scott, and R. A. Collins, Nature (London, U.K.) 217, 709 (1968).

    Article  ADS  Google Scholar 

  2. R. N. Manchester and J. H. Taylor, Pulsars (W. H. Free-man, San Francisco, CA, 1977).

    Google Scholar 

  3. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983).

    Book  Google Scholar 

  4. A. Lyne and F. Graham-Smith, Pulsar Astronomy (Cambridge Univ. Press, Cambridge, 2012).

    Book  Google Scholar 

  5. D. R. Lorimer and M. Kramer, Handbook of Pulsar Astronomy (Cambridge Univ. Press, Cambridge, 2012).

    Google Scholar 

  6. F. Pacini, Nature (London, U.K.) 216, 567 (1967).

    Article  ADS  Google Scholar 

  7. F. Pacini, Nature (London, U.K.) 219, 145 (1968).

    Article  ADS  Google Scholar 

  8. J. E. Gunn and J. P. Ostriker, Nature (London, U.K.) 221, 454 (1969).

    Article  ADS  Google Scholar 

  9. J. P. Ostriker and J. E. Gunn, Astrophys. J. 157, 1395 (1969).

    Article  ADS  Google Scholar 

  10. G. Chanmugam, Ann. Rev. Astron. Astrophys. 30, 143 (1992).

    Article  ADS  Google Scholar 

  11. W. C. G. Ho and N. Andersson, Nat. Phys. 8, 787 (2012).

    Article  Google Scholar 

  12. A. G. Lyne, C. A. Jordan, F. Graham-Smith, C. M. Espinoza, B. W. Stappers, and P. Weltevrede, Mon. Not. R. Astron. Soc. 446, 857 (2015).

    Article  ADS  Google Scholar 

  13. P. Goldreich, F. Pacini, and M. J. Rees, Comm. Astrophys. Space Phys. 3, 185 (1971).

    ADS  Google Scholar 

  14. M. A. Livingstone, V. M. Kaspi, F. P. Gavriil, and R. N. Manchester, Astrophys. J. 619, 1046 (2005).

    Article  ADS  Google Scholar 

  15. R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, Astron. J. 129, 1993 (2005).

    Article  ADS  Google Scholar 

  16. J. M. Cordes and D. J. Helfand, Astrophys. J. 239, 640 (1980).

    Article  ADS  Google Scholar 

  17. A. Lyne, G. Hobbs, M. Kramer, I. Stairs, and B. Stappers, Science (Washington, DC, U. S.) 329, 408 (2010).

    Article  ADS  Google Scholar 

  18. C. M. Espinoza, A. G. Lyne, B. W. Stappers, and M. Kramer, Mon. Not. R. Astron. Soc. 414, 1679 (2011).

    Article  ADS  Google Scholar 

  19. A. E. Chukwude and F. Chidi Odo, Res. Astron. Astrophys. 16, 150 (2016).

    Article  ADS  Google Scholar 

  20. C. M. Espinoza, A. G. Lyne, M. Kramer, R. N. Manchester, and V. M. Kaspi, Astrophys. J. Lett. 741, L13 (2011).

    Article  ADS  Google Scholar 

  21. R. F. Archibald, E. V. Gotthelf, R. D. Ferdman, V. M. Kaspi, et al., Astrophys. J. Lett. 819, L16 (2016).

    Article  ADS  Google Scholar 

  22. Y.-Y. Yang, C.-M. Zhang, D. Li, L. Chen, R.-F. Linghu, and Q.-J. Zhi, Publ. Astron. Soc. Pacif. 131, 064201 (2019).

    Article  ADS  Google Scholar 

  23. X.-H. Cui, C.-M. Zhang, D. Li, J.-W. Zhang, et al., Mon. Not. R. Astron. Soc. 508, 279 (2021).

    Article  ADS  Google Scholar 

  24. J. Zhang, C. Zhang, D. Li, W. Yang, et al., Publ. Astron. Soc. Pacif. 134, 114201 (2022).

    Article  ADS  Google Scholar 

  25. A. G. Lyne, R. S. Pritchard, and F. Graham Smith, Mon. Not. R. Astron. Soc. 265, 1003 (1993).

    Article  ADS  Google Scholar 

  26. R. D. Blandford and R. W. Romani, Mon. Not. R. Astron. Soc. 234, 57P (1988).

    Article  ADS  Google Scholar 

  27. R. X. Xu and G. J. Qiao, Astrophys. J. Lett. 561, L85 (2001).

    Article  ADS  Google Scholar 

  28. C. Alvarez and A. Carramiñana, Astron. Astrophys. 414, 651 (2004).

    Article  ADS  Google Scholar 

  29. W. C. Chen and X. D. Li, Astron. Astrophys. 450, L1 (2006).

    Article  ADS  Google Scholar 

  30. F. F. Kou and H. Tong, Mon. Not. R. Astron. Soc. 450, 1990 (2015).

    Article  ADS  Google Scholar 

  31. J. Pétri, Mon. Not. R. Astron. Soc. 485, 4573 (2019).

    Article  ADS  Google Scholar 

  32. C. Zhang, X. Cui, D. Li, D. Wang, et al., Universe 8, 628 (2022).

    Article  ADS  Google Scholar 

  33. F. C. Michel and W. H. Tucker, Nature (London, U.K.) 223, 277 (1969).

    Article  ADS  Google Scholar 

  34. A. K. Harding, I. Contopoulos, and D. Kazanas, Astrophys. J. Lett. 525, L125 (1999).

    Article  ADS  Google Scholar 

  35. M. G. Alford and K. Schwenzer, Astrophys. J. 781, 26 (2014).

    Article  ADS  Google Scholar 

  36. M. P. Allen and J. E. Horvath, Astrophys. J. 488, 409 (1997).

    Article  ADS  Google Scholar 

  37. A. Melatos, Mon. Not. R. Astron. Soc. 288, 1049 (1997).

    Article  ADS  Google Scholar 

  38. K. Chen, M. Ruderman, and T. Zhu, Astrophys. J. 493, 397 (1998).

    Article  ADS  Google Scholar 

  39. T. M. Tauris and S. Konar, Astron. Astrophys. 376, 543 (2001).

    Article  ADS  Google Scholar 

  40. S.-X. Yi and S.-N. Zhang, Mon. Not. R. Astron. Soc. 454, 3674 (2015).

    Article  ADS  Google Scholar 

  41. Y. Xie, S.-N. Zhang, and J.-Y. Liao, Res. Astron. Astrophys. 15, 963 (2015).

    Article  ADS  Google Scholar 

  42. S. Mereghetti, J. A. Pons, and A. Melatos, Space Sci. Rev. 191, 315 (2015).

    Article  ADS  Google Scholar 

  43. O. Hamil, J. R. Stone, M. Urbanec, and G. Urbancová, Phys. Rev. D 91, 063007 (2015).

    Article  ADS  Google Scholar 

  44. O. Hamil, N. J. Stone, and J. R. Stone, Phys. Rev. D 94, 063012 (2016).

    Article  ADS  Google Scholar 

  45. S. Johnston and A. Karastergiou, Mon. Not. R. Astron. Soc. 467, 3493 (2017).

    Article  ADS  Google Scholar 

  46. F. Pacini and M. Salvati, Astrophys. J. 186, 249 (1973).

    Article  ADS  Google Scholar 

  47. E. P. J. van den Heuvel, Science (Washington, DC, U. S.) 312, 539 (2006).

    Article  Google Scholar 

  48. D. Lorimer, N. Pol, K. Rajwade, K. Aggarwal, et al., Bull. Am. Astron. Soc. 51, 261 (2019).

    Google Scholar 

  49. L. Dirson, J. Pétri, and D. Mitra, Astron. Astrophys. 667, A82 (2022).

    Article  ADS  Google Scholar 

  50. M. A. Ruderman and P. G. Sutherland, Astrophys. J. 196, 51 (1975).

    Article  ADS  Google Scholar 

  51. D. Bhattacharya and E. P. J. van den Heuvel, Phys. Rep. 203, 1 (1991).

    Article  ADS  Google Scholar 

  52. K. Chen and M. Ruderman, Astrophys. J. 402, 264 (1993).

    Article  ADS  Google Scholar 

  53. A. Lyne, F. Graham-Smith, P. Weltevrede, C. Jordan, B. Stappers, C. Bassa, and M. Kramer, Science (Washington, DC, U. S.) 342, 598 (2013).

    Article  ADS  Google Scholar 

  54. F. Camilo, S. E. Thorsett, and S. R. Kulkarni, Astrophys. J. Lett. 421, L15 (1994).

    Article  ADS  Google Scholar 

  55. D. Lai, Astrophys. J. Lett. 466, L35 (1996).

    Article  ADS  Google Scholar 

  56. V. M. Kaspi, M. E. Roberts, G. Vasisht, E. V. Gotthelf, M. Pivovaroff, and N. Kawai, Astrophys. J. 560, 371 (2001).

    Article  ADS  Google Scholar 

  57. S. Zhang and Y. Xie, in Proceedings of the 9th Pacific Rim Conference on Stellar Astrophysics, Ed. by S. Qain, K. Leung, L. Zhu, and S. Kwok, ASP Conf. Ser. 451, 231 (2011).

  58. G. Ferrand and S. Safi-Harb, Adv. Space Res. 49, 1313 (2012).

    Article  ADS  Google Scholar 

  59. C.-Q. Ye, D.-H. Wang, C.-M. Zhang, and Z.-Q. Diao, Astrophys. Space Sci. 364, 198 (2019).

    Article  ADS  Google Scholar 

  60. A. G. Lyne, B. Anderson, and M. J. Salter, Mon. Not. R. Astron. Soc. 201, 503 (1982).

    Article  ADS  Google Scholar 

  61. J. M. Cordes, Astrophys. J. 311, 183 (1986).

    Article  ADS  Google Scholar 

  62. S. R. Kulkarni, Astrophys. J. Lett. 306, L85 (1986).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author thanks Chengmin Zhang, Di Li and Xianghan Cui at the National Astronomical Observatories, Chinese Academy of Sciences (NAOC) for their helpful discussions of the manuscript, and acknowledges support from Jian-Wei Mountain House. I thank the anonymous referee for the critical comments and suggestions that have significantly improved the quality of the paper.

Funding

This research is supported by the National Natural Science Foundation of China NSFC (11988101, 11773005, U2031203, U1631236, 11703001, U1731238, U1938117, 12163001, 11725313, 11721303), the International Partnership Program of Chinese Academy of Sciences grant no. 114A11KYSB20210010, the National Key R&D Program of China no. 2016YFA0400702, and the Subsidy project of the National Natural Science Foundation (Grant no. 2021GZJ006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Zhang.

Ethics declarations

As author of this work, I declare that I have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J. Estimation of the Pulsar Braking Index Using the Evolution of the Rotational Kinetic Energy Loss Rate. Testing on the Crab Pulsar. Astron. Rep. 67, 1187–1192 (2023). https://doi.org/10.1134/S1063772923110124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923110124

Keywords:

Navigation