Skip to main content
Log in

Statistics of Thermal Plasma Parameters and Non-Thermal X-Ray Spectra of Solar Flares with Helioseismic Response

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We present the results of statistical analysis of various thermal plasma parameters and non-thermal X-ray spectra of helioseismically active (producing “sunquakes”) solar flares of the 24th solar cycle up to February 2014. Two samples of flares are compared: with helioseismic activity in the form of sunquakes and a sample of flares without photospheric disturbances. The dependences of the considered flare parameters on the energy of helioseismic disturbances are also investigated. Quantitative parameters of solar flares are taken from the statistical work of the Global Energetics series by Markus Ashwanden in 2014–2019. We consider thermodynamic plasma parameters derived from the analysis of RHESSI X-ray spectra and differential emission measure (from AIA EUV images), as well as the characterization of non-thermal X-ray spectra from RHESSI. Statistical analysis confirmed that helioseismically active solar flares are characterized by significantly larger fluxes of non-thermal X-ray emission compared to flares without photospheric disturbances. A good linear relationship between helioseismic energy and the total flux of non-thermal X-ray radiation and the total energy of accelerated electrons is found. It is shown that the power-law index of the nonthermal X‑ray spectrum is not the parameter by which one can separate the two groups of flares under consideration. The analysis of the X-ray thermal spectra shows a slight difference between the flares with the sunsets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. C. L. Wolff, Astrophys. J. 176, 833 (1972).

    Article  ADS  Google Scholar 

  2. A. G. Kosovichev and V. V. Zharkova, in Helioseismology, Ed. J. T. Hoeksema et al., ESA-SP 376, 341 (1995).

  3. A. G. Kosovichev and V. V. Zharkova, Nature (London, U.K.) 393, 317 (1998).

    Article  ADS  Google Scholar 

  4. P. H. Scherrer, R. S. Bogart, R. I. Bush, et al., Solar Phys. 162, 129 (1995).

    Article  ADS  Google Scholar 

  5. V. Domingo, B. Fleck, and A. I. Poland, Solar Phys. 162, 1 (1995).

    Article  ADS  Google Scholar 

  6. C. Lindsey and D. C. Braun, Astrophys. J. 485, 895 (1997).

    Article  ADS  Google Scholar 

  7. A.-C. Donea, D. C. Braun, and C. Lindsey, Astrophys. J. Lett. 513, L143 (1999).

    Article  ADS  Google Scholar 

  8. C. Lindsey and D. C. Braun, Solar Phys. 192, 261 (2000).

    Article  ADS  Google Scholar 

  9. J. C. Buitrago-Casas, J. C. Martínez Oliveros, C. Lindsey, et al., Solar Phys. 290, 3151 (2015).

    Article  ADS  Google Scholar 

  10. A. Donea, Space Sci. Rev. 158, 451 (2011).

    Article  ADS  Google Scholar 

  11. A. G. Kosovichev, in Extraterrestrial Seismology, Ed. by V. Tong and R. García (Cambridge Univ. Press, Cambridge, 2015), p. 306.

    Google Scholar 

  12. A. G. Kosovichev, Solar Phys. 238, 1 (2006).

    Article  ADS  Google Scholar 

  13. A. G. Kosovichev and T. Sekii, Astrophys. J. Lett. 670, L147 (2007).

    Article  ADS  Google Scholar 

  14. I. N. Sharykin, A. G. Kosovichev, V. M. Sadykov, I. V. Zimovets, and I. I. Myshyakov, Astrophys. J. 843, 67 (2017).

    Article  ADS  Google Scholar 

  15. J. T. Stefan and A. G. Kosovichev, Astrophys. J. 895, 65 (2020).

    Article  ADS  Google Scholar 

  16. V. M. Sadykov, J. T. Stefan, and A. G. Kosovichev, arXiv: 2306.13162 (2023).

  17. S. Zharkov, L. M. Green, S. A. Matthews, and V. V. Zharkova, Astrophys. J. Lett. 741, L35 (2011).

    Article  ADS  Google Scholar 

  18. S. Zharkov, L. M. Green, S. A. Matthews, and V. V. Zharkova, Solar Phys. 284, 315 (2013).

    Article  ADS  Google Scholar 

  19. H. S. Hudson, G. H. Fisher, and B. T. Welsch, Subsurface and Atmospheric Influences on Solar Activity, Ed. by R. Howe , ASP Conf. Ser. 383, 221 (2008).

    Google Scholar 

  20. G. H. Fisher, D. J. Bercik, B. T. Welsch, and H. S. Hudson, Solar Phys. 277, 59 (2012).

    Article  ADS  Google Scholar 

  21. J. D. Alvarado-Gómez, J. C. Buitrago-Casas, J. C. Martínez-Oliveros, et al., Solar Phys. 280, 335 (2012).

    Article  ADS  Google Scholar 

  22. O. Burtseva, J. C. Martínez-Oliveros, G. J. D. Petrie, and A. A. Pevtsov, Astrophys. J. 806, 173 (2015).

    Article  ADS  Google Scholar 

  23. A. J. B. Russell, M. K. Mooney, J. E. Leake, and H. S. Hudson, Astrophys. J. 831, 42 (2016).

    Article  ADS  Google Scholar 

  24. I. N. Sharykin, A. G. Kosovichev, and I. V. Zimovets, Astrophys. J. 807, 102 (2015).

    Article  ADS  Google Scholar 

  25. I. N. Sharykin and A. G. Kosovichev, Astrophys. J. 808, 72 (2015).

    Article  ADS  Google Scholar 

  26. D. Besliu-Ionescu, A. Donea, and P. Cally, Sun Geosphere 12, 59 (2017).

    ADS  Google Scholar 

  27. R. P. Lin, B. R. Dennis, G. J. Hurford, et al., Solar Phys. 210, 3 (2002).

    Article  ADS  Google Scholar 

  28. R. Chen and J. Zhao, Astrophys. J. 908, 182 (2021).

    Article  ADS  Google Scholar 

  29. I. N. Sharykin and A. G. Kosovichev, Atrophys. J. 895, 76 (2020).

    Article  ADS  Google Scholar 

  30. P. H. Scherrer, J. Schou, and R. I. Bush. Solar Phys. 275, 207 (2012).

    Article  ADS  Google Scholar 

  31. W. D. Pesnell, B. J. Thompson, and P. C. Chamberlin, Solar Phys. 275, 3 (2012).

    Article  ADS  Google Scholar 

  32. W. M. Neupert, Astrophys. J. Lett. 153, L59 (1968).

    Article  ADS  Google Scholar 

  33. B. R. Dennis and D. M. Zarro, Solar Phys. 146, 177 (1993).

    Article  ADS  Google Scholar 

  34. J. C. Brown, Solar Phys. 18, 489 (1971).

    Article  ADS  Google Scholar 

  35. M. A. Livshits, O. G. Badalian, A. G. Kosovichev, and M. M. Katsova, Solar Phys. 73, 269 (1981).

    Article  ADS  Google Scholar 

  36. G. H. Fisher, R. C. Canfield, and A. N. McClymont, Astrophys. J. 289, 414 (1985).

    Article  ADS  Google Scholar 

  37. A. G. Kosovichev, Bull. Crimean Astrophys. Observ. 75, 6 (1986).

    ADS  Google Scholar 

  38. J. C. Allred, A. F. Kowalski, and M. Carlsson, Astrophys. J. 809, 104 (2015).

    Article  ADS  Google Scholar 

  39. H. Wu, Y. Dai, and M. D. Ding, Astrophys. J. Lett. 943, L6 (2023).

    Article  ADS  Google Scholar 

  40. J. R. Lemen, A. M. Title, D. J. Akin, et al., Solar Phys. 275, 17 (2012).

    Article  ADS  Google Scholar 

  41. M. J. Aschwanden, E. P. Kontar, and N. L. S. Jeffrey, Astrophys. J. 881, 22 (2019).

    Article  ADS  Google Scholar 

  42. M. J. Aschwanden, P. Boerner, D. Ryan, et al., Astrophys. J. 802, 53 (2015).

    Article  ADS  Google Scholar 

  43. M. J. Aschwanden, G. Holman, A. O’Flannagain, et al., Astrophys. J. 832, 27 (2016).

    Article  ADS  Google Scholar 

  44. E. P. Kontar, N. L. S. Jeffrey, A. G. Emslie, and N. H. Bian, Astrophys. J. 809, 35 (2015).

    Article  ADS  Google Scholar 

  45. M. J. Aschwanden, P. Boerner, A. Caspi, et al., Solar Phys. 290, 2733 (2015).

    Article  ADS  Google Scholar 

  46. R. L. Aptekar, D. D. Frederics, and S. V. Golenetskii, Space Sci. Rev. 71, 265 (1995).

    Article  ADS  Google Scholar 

  47. D. F. Ryan, A. M. O’Flannagain, M. J. Aschwanden, and P. T. Gallagher, Solar Phys. 289, 2547 (2014).

    Article  ADS  Google Scholar 

  48. G. J. D. Petrie, Astrophys. J. 759, 50 (2012).

    Article  ADS  Google Scholar 

  49. S. Wang, C. Liu, R. Liu, N. Deng, Y. Liu, and H. Wang, Astrophys. J. Lett. 745, L17 (2012).

    Article  ADS  Google Scholar 

  50. I. N. Sharykin, I. V. Zimovets, and A. V. Radivon, Cosmic Res. 61, 265 (2023).

    Article  ADS  Google Scholar 

  51. A. N. Shabalin, Yu. E. Charikov, and I. N. Sharykin, Astrophys. J. 931, 27 (2022).

    Article  ADS  Google Scholar 

  52. V. V. Zharkova and M. Gordovskyy, Astrophys. J. 651, 553 (2006).

    Article  ADS  Google Scholar 

  53. Yu. E. Charikov and A. N. Shabalin, Tech. Phys. 66, 1092 (2021).

    Article  Google Scholar 

  54. E. P. Ovchinnikova, Yu. E. Charikov, A. N. Shabalin, and G. I. Vasil’ev, Geomagn. Aeron. 58, 1008 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

The presented work was supported by the Russian Science Foundation grant no. 23-72-30002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Sharykin.

Ethics declarations

The authors of the article declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharykin, I.N., Zimovets, I.V. & Kosovichev, A.G. Statistics of Thermal Plasma Parameters and Non-Thermal X-Ray Spectra of Solar Flares with Helioseismic Response. Astron. Rep. 67, 1216–1235 (2023). https://doi.org/10.1134/S1063772923110094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923110094

Keywords:

Navigation