Skip to main content
Log in

Next Generation Gravity Missions: Studying the Possibilities of Multiple Constellations

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The work considers the potential capabilities of space constellations consisting of two pairs of spacecraft moving in different orbits, the so-called next-generation gravity missions (NGGMs), to increase the spatial-temporal measuring capability and improve the accuracy of the Earth’s gravity field recovery. As a result of numerical simulation of the orbital spacecraft motion of a multiple constellation and solving the inverse problem of the Earth’s gravity field recovery from model measurements performed in this constellation, a multiple configuration with orbital parameters h = 370 km, and i = 90.5°, h = 370 km, i = 70.0° is found, which makes it possible to increase both the spatial-temporal resolution of models of the Earth’s gravity field with a significant refinement of zonal, sectorial and tesseral harmonics compared to a single-pair near-polar constellation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. B. D. Tapley, S. Bettadpur, M. M. Watkins, and Ch. Reigber, Geophys. Res. Lett. 31, L09607 (2004).

    Article  ADS  Google Scholar 

  2. R. P. Kornfeld, B. W. Arnold, M. A. Gross, N. T. Dahya, W. M. Klipstein, P. F. Gath, and S. Bettadpur, J. Spacecr. Rockets 56, 931 (2019).

    Article  ADS  Google Scholar 

  3. T. Reubelt, N. Sneeuw and M. A. Sharifi, in Gravity, Geoid and Earth Observation, Ed. by S. P. Mertikas (Springer, 2010), p. 163.

    Google Scholar 

  4. A. S. Zhamkov and V. K. Milyukov, Izvestiya, Physics of the Solid Earth 57, 266 (2021).

  5. P. L. Bender, D. Wiese, and R. S. Nerem, in Proceedings of the 3rd International Symposium on Formation Flying, Missions and Technologies, ESA/ESTEC, Noordwijk, April 23–25, 2008, The Netherlands (2008), p. 1.

  6. D. Wiese, W. Folkner, and R. Nerem, J. Geodesy 83, 569 (2009).

    Article  ADS  Google Scholar 

  7. D. Wiese, R. Nerem, and S.-C. Han, J. Geophys. Res. Solid Earth 116, 405 (2011).

    Article  Google Scholar 

  8. B. Elsaka, J. Kusche, and K.-H. Ilk, Adv. Space Res. 50, 1534 (2012).

    Article  ADS  Google Scholar 

  9. I. Panet, J. Flury, R. Biancale, T. Gruber, et al., Surv. Geophys. 34, 141 (2012).

    Article  ADS  Google Scholar 

  10. S. I. Pour, T. Reubelt, and N. Sneeuw, Adv. Space Res. 52, 916 (2013).

    Article  ADS  Google Scholar 

  11. B. Elsaka, J.-C. Raimondo, Ph. Brieden, T. Reubelt, et al., J. Geodesy 88, 31 (2014).

    Article  ADS  Google Scholar 

  12. B. Elsaka, Int. J. Geosci. 5, 267 (2014).

    Article  Google Scholar 

  13. I. Daras and R. Pail, J. Geophys. Res. Solid Earth 122, 7343 (2017).

    Article  ADS  Google Scholar 

  14. S. Dionisio, A. Anselmi, L. Bonino, S. Cesare, L. Massotti, and P. Silvestrin, in Proceedings of the 15th International Conference on Space Operations 2018 (Am. Inst. Aeronaut. Astronaut., 2018), p. 2495.

  15. A. F. Purkhauser and R. Pail, Geophys. J. Int. 217, 1314 (2019).

    Article  ADS  Google Scholar 

  16. R. Pail, H.-C. Yeh, W. Feng, M. Hauk, et al., Remote Sens. 11, 2654 (2019).

    Article  ADS  Google Scholar 

  17. R. Pail, J. Bamber, R. Biancale, R. Bingham, et al., J. Geodetic Sci. 9, 48 (2019).

    Article  ADS  Google Scholar 

  18. M. Hauk and R. Pail, Remote Sensing 11, 537 (2019).

    Article  ADS  Google Scholar 

  19. R. Haagmans, C. Siemes, L. Massotti, O. Carraz, and P. Silvestrin, Rend. Lincei Sci. Fis. Nat. 31, 15 (2020).

    Article  ADS  Google Scholar 

  20. L. Massotti, C. Siemes, G. March, R. Haagmans, and P. Silvestrin, Remote Sens. 13, 3935 (2021).

    Article  ADS  Google Scholar 

  21. L. Massotti, J. Gonzalez del Amo, P. Silvestrin, D. Krejci, et al., CEAS Space J. 14, 109 (2022).

    Article  ADS  Google Scholar 

  22. P. L. Bender, Remote Sens. 14, 948 (2022).

    Article  ADS  Google Scholar 

  23. V. K. Milyukov, A. I. Filetkin, and A. S. Zhamkov, Astron. Rep. 65, 331 (2021).

    Article  ADS  Google Scholar 

  24. V. K. Milyukov, A. I. Filetkin, and A. S. Zhamkov, J. Exp. Theor. Phys. 134, 511 (2022).

    Article  ADS  Google Scholar 

  25. G. Petit and B. Luzum, IERS Tech. Note No. 36 (Verlag Bundesamts Kartogr. Geodas., Frankfurt am Main, 2010), p. 179.

    Google Scholar 

  26. M. V. Belikov and K. A. Taibatorov, Kinem. Fiz. Neb. Tel 6 (2), 24 (1990).

    Google Scholar 

  27. O. Montenbruck and E. Gill, Satellite Orbits. Models, Methods, and Applications (Springer, Berlin, 2000).

    Book  Google Scholar 

  28. B. Elsaka, Doctoral Dissertation (Bonn, 2010).

Download references

Funding

The work was carried out with the financial support from the Russian Science Foundation Grant no. 23-42-00055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Filetkin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kolemesin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filetkin, A.I., Zhamkov, A.S., Ayukov, S.V. et al. Next Generation Gravity Missions: Studying the Possibilities of Multiple Constellations. Astron. Rep. 67, 1165–1176 (2023). https://doi.org/10.1134/S1063772923110069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923110069

Keywords:

Navigation