Skip to main content
Log in

The Near Infrared and Optical Photometric Activity of V517 Cyg

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A near infrared and optical photometric study of Herbig star V517 Cyg has been carried out. The infrared data were obtained in 2003–2017 at the Campo Imperatore Observatory (Italy) with the Pulkovo AZT-24 telescope in the Johnson JHK bands. The optical light curves in the Johnson UBVR bands were obtained at the Maidanak observatory. Additional optical photometry from different sources (ASAS, WISE, and AAVSO) was also used. It has been shown that the behavior of V517 Cyg in the near infrared is typical for UX Ori stars. A considerable contribution to the near infrared variability is made by changes in the extinction along the line of sight; however, in the H and K bands, the influence of the disk is strong: there is a significant correlation between V and J magnitudes (r ∼ 0.84), while H and K magnitudes poorly correlate with V magnitude. The amplitude of variability in the J band is quite large (∼1.8m). In the deepest minimum in V band (\(\Delta V\) ∼ 3.6m) the star demonstrates quasi-periodic variations with an amplitude of ∼0.8m and a period of ∼19d (plain).]; and their origin is still unclear. It is possible that these oscillations are caused by the presence of a companion, a cold T Tau star, and related to its rotation period. The spectrum of V517 Cyg reveals typical for UX Ori stars the double-peaked emission line Hα. The NaI D lines have the inverse P Cyg profiles, which is indicative of intensive gas accretion onto the star. The accretion rate determined from the equivalent width of the Hα line is \({{\dot {M}}_{{{\text{acc}}}}}\) = 3.6 × 10–8 \({{M}_{ \odot }}\) per year.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Notes

  1. https://asas-sn.osu.edu/photometry

  2. https://www.aavso.org/

  3. https://irsa.ipac.caltech.edu/applications/Gator/.

  4. See a report on the 2nd international Workshop “UX Ori type stars and related topics”, https://uxors-2019.crao.ru/images/presentation/belan.pdf.

REFERENCES

  1. V. P. Grinin, N. N. Kiselev, N. K. Minikulov, G. P. Chernova, and N. V. Voshchinnikov, Astrophys. Space Sci. 186, 283 (1991).

    Article  ADS  Google Scholar 

  2. E. H. Semkov, S. P. Peneva, and S. I. Ibryamov, Astron. Astrophys. 582, A113 (2015).

    Article  ADS  Google Scholar 

  3. D. N. Shakhovskoi, V. P. Grinin, and A. N. Rostopchina, Astrophysics 48, 135 (2005).

    Article  ADS  Google Scholar 

  4. V. I. Shenavrin, V. P. Grinin, A. N. Rostopchina-Shakhovskaya, T. V. Demidova, D. N. Shakhovskoi, and S. P. Belan, Astron. Rep. 61, 38 (2017).

    Article  ADS  Google Scholar 

  5. N. V. Efimova, A. A. Arkharov, V. P. Grinin, A. N. Rostopchina-Shakhovskaya, D. N. Shakhovskoi, V. M. Larionov, S. A. Klimanov, and D. L. Gorshanov, Astron. Rep. 66, 236 (2022).

    Article  ADS  Google Scholar 

  6. V. I. Shenavrin, V. P. Grinin, A. N. Rostopchina-Shakhovskaya, T. V. Demidova, and D. N. Shakhovskoi, Astron. Rep. 56, 379 (2012).

    Article  ADS  Google Scholar 

  7. V. I. Shenavrin, A. N. Rostopchina-Shakhovskaya, V. P. Grinin, T. V. Demidova, D. N. Shakhovskoi, and S. P. Belan, Astron. Rep. 60, 753 (2016).

    Article  ADS  Google Scholar 

  8. V. I. Shenavrin, V. P. Grinin, R. V. Baluev, and T. V. Demidova, Astron. Rep. 63, 1035 (2019).

    Article  ADS  Google Scholar 

  9. F. E. Ross, Astron. J. 36, 122 (1926).

    Article  ADS  Google Scholar 

  10. C. Hoffmeister, Astron. Nachr. 278, 24 (1949).

    Article  ADS  Google Scholar 

  11. L. Meinunger, Mitt. Vernderl. Sterne 3, 137 (1966).

    Google Scholar 

  12. F. Gieseking, Veröff. Astron. Inst. Bonn 87, 1 (1973).

    Google Scholar 

  13. A. Ya. Filin, Peremen. Zvezdy, Prilozh. 2, 63 (1974).

    Google Scholar 

  14. G. W. Marcy, Astron. J. 85, 230 (1980).

    Article  ADS  Google Scholar 

  15. S. Yu. Mel’nikov, Astron. Rep. 45, 686 (2001).

    Article  ADS  Google Scholar 

  16. G. H. Herbig, Astrophys. J. 131, 632 (1960).

    Article  ADS  Google Scholar 

  17. L. P. Metik, Izv. KrAO 23, 60 (1960).

    Google Scholar 

  18. V. S. Shevchenko K. N. Grankin, and S. Yu. Mel’nikov, Sov. Astron. 32, 641 (1988).

    ADS  Google Scholar 

  19. G. U. Kovalchuk and A. F. Pugach, Astron. Astrophys. 325, 1077 (1997).

    ADS  Google Scholar 

  20. S. L. Grant, C. C. Espaillat, S. Brittain, C. Scott-Joseph, and N. Calvet, Astrophys. J. 926, 229 (2022).

    Article  ADS  Google Scholar 

  21. C. A. L. Bailer-Jones, J. Rybizki, M. Fouesneau, G. Mantelet, and R. Andrae, Astron. J. 156, 58 (2018).

    Article  ADS  Google Scholar 

  22. L. Terranegra, C. Chavarria-K., S. Diaz, and D. Gonzalez-Patino, Astron. Astrophys. Suppl. Ser. 104, 557 (1994).

    ADS  Google Scholar 

  23. G. H. Herbig, Astrophys. J. 128, 259 (1958).

    Article  ADS  Google Scholar 

  24. V. I. Kardopolov and G. K. Filip’ev, Peremen. Zvezdy 22, 126 (1985).

    ADS  Google Scholar 

  25. V. I. Kardopolov, G. K. Filip’ev, A. F. Shaimieva, and N. A. Shutemova, Sov. Astron. 32, 498 (1988).

    ADS  Google Scholar 

  26. G. V. Abramyan, S. V. Zaratsyan, N. D. Melikyan, S. Yu. Mel’nikov, and V. S. Shevchenko, Astrophysics 32, 24 (1990).

    Article  ADS  Google Scholar 

  27. V. I. Kardopolov, F. K. Rspaev, and I. V. Nosov, Sov. Astron. 32, 630 (1988).

    ADS  Google Scholar 

  28. V. S. Shevchenko, K. N. Grankin, M. A. Ibragimov, S. Y. Mel’nikov, and S. D. Yakubov, Astrophys. Space Sci. 202, 121 (1993).

    Article  ADS  Google Scholar 

  29. V. S. Shevchenko, K. N. Grankin, M. A. Ibragimov, S. Y. Melnikov, and S. D. Yakubov, Astrophys. Space Sci. 202, 137 (1993).

    Article  ADS  Google Scholar 

  30. W. Herbst and V. S. Shevchenko, Astron. J. 118, 1043 (1999).

    Article  ADS  Google Scholar 

  31. V. P. Grinin, Sov. Astron. Lett. 14, 27 (1988).

    ADS  Google Scholar 

  32. D. A. Allen, Mon. Not. R. Astron. Soc. 161, 145 (1973).

    Article  ADS  Google Scholar 

  33. I. S. Glass and M. V. Penston, Mon. Not. R. Astron. Soc. 167, 237 (1974).

    Article  ADS  Google Scholar 

  34. V. I. Kardopolov and F. K. Rspaev, Astron. Tsirk. 1547, 13 (1991).

    ADS  Google Scholar 

  35. A. V. Berdyugin, S. V. Berdyugina, V. P. Grinin, and N. Kh. Minikulov, Sov. Astron. 34, 408 (1990).

    ADS  Google Scholar 

  36. F. D’Alessio, A. di Cianno, A. di Paola, C. Giuliani, et al., Proc. SPIE 4008, 748 (2000).

    Article  ADS  Google Scholar 

  37. E. Brocato and M. Dolci, Mem. Soc. Astron. Ital. 74, 110 (2003).

    ADS  Google Scholar 

  38. V. S. Shevchenko, Herbig Ae/Be Stars (FAN, Tashkent, 1989) [in Russian].

    Google Scholar 

  39. R. L. Kurucz, Astrophys. J. Suppl. 40, 1 (1979).

    Article  Google Scholar 

  40. V. P. Grinin, Astron. Astrophys. Trans. 3, 17 (1992).

    Article  ADS  Google Scholar 

  41. V. P. Grinin and A. N. Rostopchina, Astron. Rep. 40, 171 (1996).

    ADS  Google Scholar 

  42. M. Vioque, R. D. Oudmaijer, D. Baines, I. Mendigutia, and R. Perez-Martinez, Astron. Astrophys. 620, A128 (2018).

    Article  ADS  Google Scholar 

  43. J. Guzmán-Díaz, I. Mendigutía, B. Montesinos, R. D. Oudmaijer, et al., Astron. Astrophys. 650, A182 (2021).

    Article  Google Scholar 

  44. V. P. Grinin and L. V. Tambovtseva, Universe 8, 224 (2022).

    Article  ADS  Google Scholar 

  45. K. Wood and B. Whitney, Astrophys. J. 506, L43 (1998).

    Article  ADS  Google Scholar 

  46. J. Bouvier, A. Chelli, S. Allain, L. Carrasco, et al., Astron. Astrophys. 349, 619 (1999).

    ADS  Google Scholar 

  47. J. R. Fairlamb, R. D. Oudmaijer, I. Mendigutia, J. D. Ilee, and M. E. van den Ancker, Mon. Not. R. Astron. Soc. 464, 4721 (2017).

    Article  ADS  Google Scholar 

  48. C. Wichittanakom, R. D. Oudmaijer, J. R. Fairlamb, I. Mendigutía, M. Vioque, and K. M. Ababakr, Mon. Not. R. Astron. Soc. 493, 234 (2020).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to the ASAS and AAVSO participants for photometric observations and to L.V. Tambovtseva for useful comments.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Grinin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Petrova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Efimova, N.V., Grinin, V.P., Arkharov, A.A. et al. The Near Infrared and Optical Photometric Activity of V517 Cyg. Astron. Rep. 67, 1139–1155 (2023). https://doi.org/10.1134/S1063772923110045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923110045

Keywords:

Navigation