Skip to main content
Log in

Evolution of Meteoroid Streams Originating from NEA Collisions

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

This work examines the formation and evolution of meteoroid streams formed during collisions of near-Earth asteroids (NEAs) with objects in the Main Asteroid Belt (MAB). This collision scenario is considered more likely compared to collisions between NEAs, since many NEAs, by virtue of their origin, intersect the MAB region, in which the density of objects is significant compared to the inner regions of the Solar System. The resulting meteoroid streams have a number of differences from streams of cometary origin, both in terms of the formation of the stream and during further dynamic evolution. In this paper, estimates are obtained for the rate of meteoroid formation as a result of collisions of NEAs with MAB asteroids. Based on high-speed collision models and data from the DART experiment, possible particle size and velocity distributions are obtained. Numerical modeling of the dynamics of the resulting meteoroid stream was carried out, considering gravitational disturbances and radiation forces, and the influence of the initial emission velocity on the evolution of the stream was studied. An analysis of the rate of dust production was carried out considering the distribution of the current NEA population, and it was concluded that the rate of influx of meteoroids of asteroid and comet origin (in mass terms) can be quite comparable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Notes

  1. https://www.ta3.sk/IAUC22DB/MDC2022/

  2. https://cneos.jpl.nasa.gov/stats/totals.html

  3. https://minorplanetcenter.net

  4. https://ssd.jpl.nasa.gov/horizons/app.html

  5. https://neo.ssa.esa.int/neo-population-generator

REFERENCES

  1. D. Jewitt and H. H. Hsieh, arXiv: 2203.01397 [astro-ph.EP] (2022).

  2. V. V. Busarev, S. I. Barabanov, and V. B. Puzin, Solar Syst. Res. 50, 281 (2016).

    Article  ADS  Google Scholar 

  3. V. V. Busarev, M. P. Shcherbina, S. I. Barabanov, T. R. Irsmambetova, et al., Solar Syst. Res. 53, 261 (2019).

    Article  ADS  Google Scholar 

  4. B. M. Shustov, R. V. Zolotarev, V. V. Busarev, and M. P. Shcherbina, Astron. Rep. 66, 1098 (2022).

    Article  ADS  Google Scholar 

  5. D. Jewitt, H. Hsieh, and J. Agarwal, in Asteroids IV, Ed. by P. Michel, F. E. DeMeo, and W. F. Bottke (Univ. Arizona Press, Tucson, 2015), p. 203.

  6. D. Jewitt, H. Weaver, J. Agarwal, M. Mutchler, and M. Drahus, in Proceedings of the DPS Meeting No. 42, AAS/DPS Abstracts (Am. Astron. Soc., 2010), p. 53.03; Bull. Am. Astron. Soc. 42, 1072 (2010); arXiv: 1010.2575 [astro-ph.EP].

    ADS  Google Scholar 

  7. J.-Y. Li, M. Hirabayashi, T. L. Farnham, J. M. Sunshine, et al., arXiv: 2303.01700 [astro-ph.EP] (2023).

  8. T. J. Jopek, G. I. Kokhirova, P. Jenniskens, D. Janches, M. Hajdukova, and R. Rudawska, Izv. Akad. Nauk Tadzhik., Otd. Fiz.-Mat. Khim. Geol. Tekh. Nauk, No. 2, 51 (2021).

  9. P. Jenniskens and J. Vaubaillon, Astron. J. 136, 725 (2008).

    Article  ADS  Google Scholar 

  10. B. Yang, J. Zhu, J. Gao, J. Ma, X. Zhou, H. Wu, and M. Guan, Astron. J. 126, 1086 (2003).

    Article  ADS  Google Scholar 

  11. P. B. Babadzhanov, G. I. Kokhirova, and Y. V. Obrubov, Kinem. Phys. Cel. Bodies 32, 250 (2016).

    Article  Google Scholar 

  12. T. Kasuga, J.-I. Watanabe, and M. Sato, Mon. Not. R. Astron. Soc. 373, 1107 (2006).

    Article  ADS  Google Scholar 

  13. D. C. Boice and J. Benkhoff, in Proceedings of the IAU General Assembly, Meeting No. 29 (2015), p. 2258088.

  14. J. Licandro, H. Campins, T. Mothé-Diniz, N. Pinilla-Alonso, and J. de León, Astron. Astrophys. 461, 751 (2007).

    Article  ADS  Google Scholar 

  15. A. Cellino, M. Devogele, I. Belskaya, S. Bagnulo, and P. Bendjoya, in Proceedings of the European Planetary Science Congress 2018, September 16–21, 2018, Berlin, Germany (2018), EPSC2018-251.

  16. M. Tabeshian, P. Wiegert, Q. Ye, M.-T. Hui, X. Gao, and H. Tan, Astron. J. 158, 30 (2019); arXiv: 1905.10329 [astro-ph.EP].

    Article  ADS  Google Scholar 

  17. V. Porubčan, L. Kornoš, and I. P. Williams, Contrib. Astron. Observ. Skalnate Pleso 36, 103 (2006); arXiv: 0905.1639 [astro-ph.EP].

  18. J. K. Kueny, C. O. Chandler, M. Devogéle, N. Moskovitz, et al., Planet. Sci. J. 4, 56 (2023); arXiv: 2303.12991 [astro-ph.EP].

    Article  Google Scholar 

  19. G. Kokhirova, P. Babadzhanov, and Y. Obrubov, in Proceedings of the IAU General Assembly, Meeting No. 29 (2015), p. 2256176.

  20. M. Sokolova, M. Sergienko, Y. Nefedyev, A. Andreev, and L. Nefediev, Adv. Space Res. 62, 2355 (2018).

    Article  ADS  Google Scholar 

  21. G. I. Kokhirova, P. B. Babadzhanov, U. H. Khamroev, and A. I. Zhonmuhammadi, Izv. Akad. Nauk Tadzhik., Otd. Fiz.-Mat. Khim. Geol. Tekh. Nauk, No. 4, 41 (2020).

  22. Y. Obrubov, in Meteroids 1998, Ed. by W. J. Baggaley and V. Porubcan (Polygrafia SAV, Bratislava, 1999), p. 167.

    Google Scholar 

  23. J. J. García-Martínez and F. Ortega-Gutiérrez, Meteor. Planet. Sci. Suppl. 42, 5327 (2007).

    Google Scholar 

  24. J. Borovička, P. Spurný, and P. Brown, in Asteroids IV, Ed. by P. Michel, F. E. DeMeo, and W. F. Bottke (Univ. Arizona Press, Tucson, 2015), p. 257.

  25. J. Vaubaillon, L. Neslušan, A. Sekhar, R. Rudawska, and G. O. Ryabova, in Meteoroids: Sources of Meteors on Earth and Beyond, Ed. by G. O. Ryabova, D. J. Asher, and M. D. Campbell-Brown (Cambridge Univ. Press, Cambridge, UK, 2019), p. 161.

    Google Scholar 

  26. P. Jenniskens, Meteor Showers and Their Parent Comets (Cambridge Univ. Press, Cambridge, UK, 2008).

    Google Scholar 

  27. B. M. Shustov and R. V. Zolotarev, Astron. Rep. 66, 179 (2022).

    Article  ADS  Google Scholar 

  28. R. V. Zolotarev and B. M. Shustov, Astron. Rep. 66, 255 (2022).

    Article  ADS  Google Scholar 

  29. M. Granvik, A. Morbidelli, R. Jedicke, B. Bolin, et al., Nature (London, U.K.) 530 (7590), 303 (2016).

    Article  ADS  Google Scholar 

  30. P. Wiegert, P. Brown, P. Pokorny, Q. Ye, C. Gregg, K. Lenartowicz, Z. Krzeminski, and D. Clark, in Proceedings of the AAS Meeting No. 236, p. 326.03; Bull. Am. Astron. Soc. 52 (3) (2020).

  31. A. Morbidelli, W. F. Bottke, Jr., C. Froeschlé, and P. Michel, in Asteroids III, Ed. by W. F. Bottke, Jr., A. Cellino, P. Paolicchi, and R. P. Binzel (Univ. Arizona Press, Tucson, 2002), p. 409.

  32. A. Nakamura and A. Fujiwara, Icarus 92, 132 (1991).

    Article  ADS  Google Scholar 

  33. V. V. Adushkin and B. D. Khristoforov, Fiz. Goreniya Vzryva 40, 71 (2004).

    Google Scholar 

  34. H. J. Melosh, Impact Cratering: A Geologic Process (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  35. J. B. Vincent, M. Hoffman, A. Nathues, H. Sierks, et al., in Proceedings of the 43rd Lunar and Planetary Science Conference, March 19–23, 2012, The Woodlands, TX, LPI Contrib., No. 1659, 1415 (2012).

  36. K. R. Housen and K. A. Holsapple, Icarus 211, 856 (2011).

    Article  ADS  Google Scholar 

  37. K. A. Holsapple and K. R. Housen, Icarus 187, 345 (2007).

    Article  ADS  Google Scholar 

  38. P. Sánchez and D. J. Scheeres, Meteor. Planet. Sci. 49, 788 (2014); arXiv: 1306.1622 [astro-ph.EP].

    Article  ADS  Google Scholar 

  39. R. T. Daly, C. M. Ernst, O. S. Barnouin, N. L. Chabot, et al., arXiv: 2303.02248 [astro-ph.EP] (2023).

  40. F. Moreno, A. Campo Bagatin, G. Tancredi, P.-Y. Liu, and B. Domínguez, Mon. Not. R. Astron. Soc. 515, 2178 (2022); arXiv: 2206.15350 [astro-ph.EP].

    Article  ADS  Google Scholar 

  41. L. S. Novikov, The Impact of Solid Particles of Natural and Artificial Origin on Spacecraft, The School-Book (Univ. Kniga, Moscow, 2009) [in Russian].

    Google Scholar 

  42. J. C. Mandeville and J. F. Vedder, Earth Planet. Sci. Lett. 11, 297 (1971).

    Article  ADS  Google Scholar 

  43. A. Graykowski, R. A. Lambert, F. Marchis, D. Cazeneuve, et al., arXiv: 2303.05548 [astro-ph.EP] (2023).

  44. J. S. Dohnanyi, J. Geophys. Res. 74, 2531 (1969).

    Article  ADS  Google Scholar 

  45. S. Takasawa, A. M. Nakamura, T. Kadono, M. Arakawa, et al., Astrophys. J. 733, L39 (2011).

    Article  ADS  Google Scholar 

  46. J. Deller, Hyper-Velocity Impacts on Rubble Pile Asteroids (Springer Int., Cham, 2017).

    Book  Google Scholar 

  47. P. Ševeček, M. Brož, D. Nesvorný, B. Enke, D. Durda, K. Walsh, and D. C. Richardson, Icarus 296, 239 (2017); arXiv: 1803.10666 [astro-ph.EP].

    Article  ADS  Google Scholar 

  48. I. G. Brykina and L. A. Egorova, Solar Syst. Res. 56, 338 (2022).

    Article  ADS  Google Scholar 

  49. G. Drolshagen, D. Koschny, S. Drolshagen, J. Kretschmer, and B. Poppe, Planet. Space Sci. 143, 21 (2017).

    Article  ADS  Google Scholar 

  50. A. M. Vickery, Geophys. Res. Lett. 14, 726 (1987).

    Article  ADS  Google Scholar 

  51. H. J. Melosh, in Proceedings of the 51st Lunar and Planetary Science Conference, March 16–20, 2020, The Woodlands, TX, LPI Contrib., No. 2326, 2587 (2020).

  52. N. Onose and A. Fujiwara, in Impact Cratering: Bridging the Gap between Modeling and Observations, Ed. by R. Herrick and E. Pierazzo, February 7–9, 2003, LPI Contrib., No. 1155, 55 (2003).

  53. D. Koschny and E. Grün, Icarus 154, 402 (2001).

    Article  ADS  Google Scholar 

  54. H. Cibulková, M. Brož, and P. G. Benavidez, Icarus 241, 358 (2014); arXiv: 1407.6143 [astro-ph.EP].

    Article  ADS  Google Scholar 

  55. H. Rein and S. F. Liu, Astron. Astrophys. 537, A128 (2012); arXiv: 1110.4876 [astro-ph.EP].

    Article  ADS  Google Scholar 

  56. H. Rein, D. M. Hernandez, D. Tamayo, G. Brown, et al., Mon. Not. R. Astron. Soc. 485, 5490 (2019); arXiv: 1903.04972 [astro-ph.EP].

    Article  ADS  Google Scholar 

  57. J. A. Burns, P. L. Lamy, and S. Soter, Icarus 40, 1 (1979).

    Article  ADS  Google Scholar 

  58. M. Granvik, A. Morbidelli, R. Jedicke, B. Bolin, et al., Icarus 312, 181 (2018).

    Article  ADS  Google Scholar 

  59. R. V. Zolotarev and B. M. Shustov, Astron. Rep. 65, 518 (2021).

    Article  ADS  Google Scholar 

Download references

Funding

The work was supported by the Russian Science Foundation, grant no. 22-12-00115.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. V. Zolotarev or B. M. Shustov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by T. Sokolova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolotarev, R.V., Shustov, B.M. Evolution of Meteoroid Streams Originating from NEA Collisions. Astron. Rep. 67, 1019–1036 (2023). https://doi.org/10.1134/S1063772923100098

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923100098

Keywords:

Navigation