Skip to main content
Log in

Radio Emission Spectrum of Supernova Remnant G74.9+1.2

  • Published:
Astronomy Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Measurements of the flux densities of the supernova remnant (SNR) G74.9+1.2 (CTB 87) at frequencies of 4840 and 8450 MHz were carried out with the RT-32 radio telescope of the Svetloye observatory of the Institute of Applied Astronomy, Russian Academy of Sciences (IAA RAS), in 2018–2019. The data contain signs of the presence of a source of a variable component in the radio emission on a time scale of a month or more. The flux densities of G74.9+1.2 over the time interval 1959.7–2010 are determined from published data, which allow the intensity of G74.9+1.2 to be compared with standard sources. All the data are presented in a single system based on the exact scale of “artificial moon” (AM) fluxes. A refined spectrum of SNR G74.9+1.2 was obtained. The totality of available data is approximated by two power-law sections with different spectral indices: \({{\alpha }_{1}} = 0.31\) at frequencies \(f < {{f}_{b}}\) and \({{\alpha }_{2}} = 0.71\) at \(f > {{f}_{b}}\). The projections of two power-law sections intersect at a frequency \({{f}_{b}} \approx 3409\) MHz. The break in the radio spectrum of the source, considering its age (more than 4000 years), could form as a result of synchrotron losses. The increase in the steepness of the spectrum close to 0.5 above the frequency \({{f}_{b}}\) is an argument in favor of such an assumption. The totality of data obtained during measurements on the RT-32 and on the basis of published works allows us to state that the variable component in the G74.9+1.2 radio emission on all time scales is much less pronounced compared to younger PWNs. As a possible mechanism for the observed variability, a reconnection of the magnetic field lines in the pulsar magnetosphere is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

REFERENCES

  1. D. A. Green, Bull. Astron. Soc. India 37, 45 (2009).

    ADS  Google Scholar 

  2. B. J. Wallace, T. L. Landecker, A. R. Taylor, and S. Pineault, Astron. Astrophys. 317, 212 (1997).

    ADS  Google Scholar 

  3. A. S. Wilson, Astrophys. J. Lett. 241, L19 (1980).

    Article  ADS  Google Scholar 

  4. H. Matheson, S. Safi-Harb, and R. Kothes, Astrophys. J. 774, 33 (2013).

    Article  ADS  Google Scholar 

  5. A. A. Abdo, B. Allen, D. Berley, E. Blaufuss, et al., A-strophys. J. 658, L33 (2007).

    ADS  Google Scholar 

  6. E. Aliu, S. Archambault, T. Arlen, T. Aune, et al., in Proceedings of the 7th International Cosmic Ray Conference ICRC (2011), Vol. 7, p. 227; arXiv: 0812.1415 [astro-ph] (2008).

  7. P. L. Nolan, A. A. Abdo, M. Ackermann, M. Ajello, et al., Astrophys. J. Suppl. 199, 31 (2012).

    Article  Google Scholar 

  8. V. P. Ivanov, A. V. Ipatov, I. A. Rakhimov, and T. S. Andreeva, Astron. Rep. 66, 953 (2022).

    Article  ADS  Google Scholar 

  9. V. P. Ivanov, A. V. Ipatov, I. A. Rakhimov, S. A. Grenkov, and T. S. Andreeva, Astron. Rep. 62, 574 (2018).

    Article  ADS  Google Scholar 

  10. A. M. Finkel’shtein, Nauka Ross. 5, 20 (2001).

    Google Scholar 

  11. A. Finkelstein, A. Ipatov, and S. Smolentsev, in Proceedings of the 4th APSGP WorkShop, Ed. by H. Cheng and Q. Zhi-han (Shanghai Sci. Tech. Publ., Shanghai, 2002), p. 47.

  12. I. A. Rakhimov, Sh. B. Akhmedov, A. A. Zborovskii, D. V. Ivanov, A. V. Ipatov, S. G. Smolentsev, and A. M. Finkel’shtein, in Proceedings of the All-Russia Astronomical Conference (IPA RAN, St. Petersburg, 2001), p. 152.

  13. V. P. Ivanov, K. S. Stankevich, and S. P. Stolyarov, Astron. Rep. 38, 654 (1994).

    ADS  Google Scholar 

  14. M. Ott, A. Witzel, A. Quirrenbach, T. P. Krichbaum, K. J. Standke, C. J. Schalinski, and C. A. Hummel, A-stron. Astrophys. 284, 331 (1994).

    ADS  Google Scholar 

  15. C. Fanti, M. Felli, A. Ficarra, C. J. Salter, G. Tofani, and P. Tomasi, Astron. Astrophys. Suppl. Ser. 16, 43 (1974).

    ADS  Google Scholar 

  16. H. J. Wendker, I. A. Higgs, and T. I. Landecker, Astron. Astrophys. 241, 551 (1991).

    ADS  Google Scholar 

  17. S. Pineault and P. Chastenay, Mon. Not. R. Astron. Soc. 246, 169 (1990).

    ADS  Google Scholar 

  18. R. Kothes, K. Fedotov, T. J. Foster, and B. Uyaniker, Astron. Astrophys. 457, 1081 (2006).

    Article  ADS  Google Scholar 

  19. K. W. Weiler and P. A. Shaver, Astron. Astrophys. 70, 389 (1978).

    ADS  Google Scholar 

  20. R. W. Wilson and J. G. Bolton, Publ. Astron. Soc. Pacif. 72, 331 (1960).

    Article  ADS  Google Scholar 

  21. R. M. Duin, F. P. Israel, J. R. Dickel, and E. R. Seaquist, Astron. Astrophys. 38, 461 (1975).

    ADS  Google Scholar 

  22. W. J. Altenhoff, D. Downes, L. Goad, A. Maxwell, and R. Rinehart, Astron. Astrophys. Suppl. Ser. 1, 319 (1970).

    ADS  Google Scholar 

  23. B. J. Geldzahler, T. Pauls, and C. J. Salter, Astron. Astrophys. 84, 237 (1980).

    ADS  Google Scholar 

  24. H. J. Wendker, Astron. Astrophys. Suppl. Ser. 58, 291 (1984).

    ADS  Google Scholar 

  25. X. H. Sun, P. Reich, W. Reich, L. Xiao, X. Y. Gao, and J. L. Han, Astron. Astrophys. 536, A83 (2011).

    Article  ADS  Google Scholar 

  26. E. C. Reifenstein, T. L. Wilson, B. F. Burke, P. G. Mez-ger, and W. J. Altenhoff, Astron. Astrophys. 4, 357 (1970).

    ADS  Google Scholar 

  27. N. Hurley-Walker, A. M. M. Scaife, D. A. Green, M. L. Davies, et al., Mon. Not. R. Astron. Soc. 396, 365 (2009).

    Article  ADS  Google Scholar 

  28. H. W. Morsi and W. Reich, Astron. Astrophys. Suppl. Ser. 69, 533 (1987).

    ADS  Google Scholar 

  29. V. P. Ivanov, A. V. Ipatov, I. A. Rahimov, and T. S. Andreeva, Astron. Rep. 65, 645 (2021).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Ivanov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by M. Chubarova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, V.P., Ipatov, A.V., Rahimov, I.A. et al. Radio Emission Spectrum of Supernova Remnant G74.9+1.2. Astron. Rep. 67, 963–969 (2023). https://doi.org/10.1134/S1063772923100062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923100062

Keywords:

Navigation