Skip to main content
Log in

Evolution of the X-ray Binary System Sco X-1

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The possible evolution of a bright low-mass X-ray binary system Sco X-1 is numerically investigated within the framework of a model assuming that the donor-star of the system (a satellite of a neutron star) fills its Roche lobe. The calculations consider a strong induced stellar wind (ISW) of the donor, which occurs due to irradiation by hard radiation of an accreting relativistic star. At the same time, using the example of Sco X-1, three hypotheses are investigated, within the framework of which a high rate of mass exchange can be obtained for semi-detached X-ray binaries. The first hypothesis is the presence of a strong ISW of the donor with standard magnetic braking. Calculations have shown that in this case it is possible to obtain a high rate of mass exchange, but at the same time the donor cannot fill the Roche lobe—it “goes under it.” The second hypothesis is an increase of magnetic braking, that is, an increase of the loss of angular momentum from the system due to the magnetic stellar wind of the donor (MSW). Such an amplification may be associated with the intense ISW of the donor in the presence of a strong magnetic field. Numerical modeling shows that with an increase of MSW by \( \sim {\kern 1pt} 20\) times, a high rate of mass exchange is possible when the donor fills its Roche lobe. The third hypothesis suggests the possibility of canceling the direct exchange of angular momentum between the orbital moment of the system and the moment of accreted matter passing from a low-mass donor to a more massive accretor. With such cancellation, the main process, increasing the semi-axis of the orbit, disappears. Calculations show that in this case it is possible to obtain a sufficiently high rate of mass exchange. However, the most likely reason for the increase of the rate of mass exchange in low-mass X-ray binary systems is probably the increase of magnetic braking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. R. Giacconi, H. Gursky, F. R. Paolini, and B. B. Rossi, Phys. Rev. Lett. 9, 439 (1962).

    Article  ADS  Google Scholar 

  2. N. Soker, J. Bublitz, and J. H. Kastner, Astrophys. J. 928, 159 (2022).

    Article  ADS  Google Scholar 

  3. I. S. Shklovskii, Sov. Astron. 11, 749 (1968).

    ADS  Google Scholar 

  4. A. M. Cherepashchuk, N. A. Katysheva, and T. S. Khruzina, in Highly Evolved Close Binary Stars: Catalogue (Gordon and Breach, Amsterdam, 1996), p. 96.

    Google Scholar 

  5. A. M. Cherepashchuk, T. S. Khruzina, and A. I. Bogomazov, Mon. Not. R. Astron. Soc. 508, 1389 (2021).

    Article  ADS  Google Scholar 

  6. A. M. Cherepashchuk, T. S. Khruzina, and A. I. Bogomazov, Astron. Rep. 66, 348 (2022).

    Article  ADS  Google Scholar 

  7. I. F. Mirabel, and I. Rodrigues, Ann. Rev. Astron. Astrophys. 37, 409 (1999).

    Article  ADS  Google Scholar 

  8. A. V. Fedorova and A. V. Tutukov, Astron. Rep. 66, 925 (2022).

    Article  ADS  Google Scholar 

  9. I. J. Iben, A. V. Tutukov, and L. R. Jungelson, Astrophys. J. Suppl. 100, 233 (1995).

    Article  Google Scholar 

  10. I. J. Iben, A. V. Tutukov, and A. V. Fedorova, Astrophys. J. 486, 955 (1997).

    Article  ADS  Google Scholar 

  11. A. V. Tutukov and A. V. Fedorova, Astron. Rep. 46, 765 (2002).

    Article  ADS  Google Scholar 

  12. A. V. Tutukov and A. V. Fedorova, Astron. Rep. 47, 600 (2003).

    Article  ADS  Google Scholar 

  13. K. Pavlovskii and N. Ivanova, Mon. Not. R. Astron. Soc. 456, 263 (2016).

    Article  ADS  Google Scholar 

  14. W.-C. Chen, Astron. Astrophys. 606, 60 (2017).

    Article  Google Scholar 

  15. P. Podsiadlowski, S. Rappaport, and E. D. Pfahl, Astrophys. J. 565, 1107 (2002).

    Article  ADS  Google Scholar 

  16. K. Asai, T. Mihara, and M. Matsuoka, Publ. Astron. Soc. Jpn. 74, 974 (2022).

    Article  ADS  Google Scholar 

  17. A. Bahramian and N. Degenaar, arXiv: 2206.10053 [astro-ph.HE] (2022).

  18. U. Kolb and H. Ritter, Astron. Astrophys. 236, 385 (1990).

    ADS  Google Scholar 

  19. S. S. Huang, Ann. Rev. Astron. Astrophys. 4, 35 (1966).

    Article  ADS  Google Scholar 

  20. B. Paczynski, Acta Astron. 16, 231 (1966).

    ADS  Google Scholar 

  21. M. Diaz Trigo and L. Boirin, Astron. Nachr. 337, 368 (2016).

    Article  ADS  Google Scholar 

  22. P. Kosec, E. Kara, A. C. Fabian, F. Fürst, et al., Nat. Astron. 7, 715 (2023).

    Article  ADS  Google Scholar 

  23. P. O. Petrucci, S. Bianchi, G. Ponti, J. Ferreira, et al., Astron. Astrophys. 649, A128 (2021).

    Article  Google Scholar 

  24. S. Fijma, N. Castro Segura, N. Degenaar, C. Knigge, N. Higginbottom, J. V. Hernindez Santisteban, and T. J. Maccarone, arXiv: 2305.10793 [astro-ph.HE] (2023).

  25. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Fizmatgiz, Moscow, 1962; Pergamon, Oxford, 1975).

  26. A. V. Fedorova and A. V. Tutukov, Astron. Rep. 38, 377 (1994).

    ADS  Google Scholar 

  27. A. Skumanich, Astrophys. J. 171, 565 (1972).

    Article  ADS  Google Scholar 

  28. B. Paczynski, Ann. Rev. Astron. Astrophys. 9, 183 (1971).

    Article  ADS  Google Scholar 

  29. H. Lamers, G. Snow, and D. Lindholm, Astrophys. J. 455, 269 (1995).

    Article  ADS  Google Scholar 

  30. C. Hawcroft, H. Sana, L. Mahy, J. O. Sundqvist, et al., arXiv: [2303.12165 astro-ph.HE] (2023).

  31. I. Stevens, Mon. Not. R. Astron. Soc. 265, 601 (1993).

    Article  ADS  Google Scholar 

  32. S. Bogovalov and M. Petrov, Universe 7, 353 (2021).

    Article  ADS  Google Scholar 

  33. I. F. Mirabel and I. Rodrigues, Astron. Astrophys. 398, L25 (2003).

    Article  ADS  Google Scholar 

  34. A. M. Cherepashchuk, N. A. Katysheva, T. S. Khruzina, S. Y. Shugarov, A. M. Tatarnikov, and A. I. Bogomazov, Mon. Not. R. Astron. Soc. 490, 3287 (2019).

    Article  ADS  Google Scholar 

  35. A. I. Bogomazov, A. M. Cherepashchuk, T. S. Khruzina, and A. V. Tutukov, Mon. Not. R. Astron. Soc. 514, 5375 (2022).

    Article  ADS  Google Scholar 

  36. A. C. Raga and J. Canto, Rev. Mex. Astron. Astrofis. 58, 301 (2022).

    ADS  Google Scholar 

  37. L. G. Luk’yanov, Astron. Astrophys. Trans. 27, 82 (2011).

    ADS  Google Scholar 

  38. L. G. Luk’yanov and S. A. Gasanov, Astron. Rep. 55, 733 (2011).

    Article  ADS  Google Scholar 

  39. A. A. Medvedeva and S. A. Gasanov, Astron. Rep. 58, 554 (2014).

    Article  ADS  Google Scholar 

  40. P. Hertz, K. Wood, and L. Cominsky, Astrophys. J. 486, 1000 (1997).

    Article  ADS  Google Scholar 

  41. A. G. Masevich and A. V. Tutukov, Evolution of Stars: Theory and Observations (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  42. M. Gilfanov, G. Fabbiano, and B. Lehmer, arXiv: 2304.14080 [astro-ph.HE] (2023).

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Fedorova or A. V. Tutukov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Seifina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorova, A.V., Tutukov, A.V. Evolution of the X-ray Binary System Sco X-1. Astron. Rep. 67, 1074–1090 (2023). https://doi.org/10.1134/S1063772923100049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923100049

Keywords:

Navigation