Skip to main content
Log in

Equilateral Triangular Configuration in the Perturbed Circular Restricted Four-Body Problem with Kerr-like Primaries and Variable Mass Test Particle

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The aim of this paper is to study the motion behaviour of the variable mass test particle which is moving under the various perturbation effects such as gravitational forces of the primaries, spin about their axes, the transition from the Newtonian to the beyond-Newtonian regime and also due to the Coriolis as well as centrifugal forces in the equilateral triangular configuration of the circular restricted four-body problem. After determining the equations of motion and quasi-Jacobi integral, we illustrate the locations of stationary points, their stability, Poincaré surfaces of section and periodic orbits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. V. Szebehely, Theory of Orbits, the Restricted Problem of Three Bodies (Academic, New York, 1967).

    MATH  Google Scholar 

  2. K. B. Bhatnagar and P. P. Hallan, Celest. Mech. Dyn. Astron. 18, 105 (1979).

    Article  Google Scholar 

  3. K. B. Bhatnagar and P. P. Hallan, Celest. Mech. Dyn. Astron. 20, 95 (1979).

    Article  Google Scholar 

  4. D. J. Scheeres and J. Bellerose, Dyn. Syst.: Int. J. 20, 23 (2005).

    Article  Google Scholar 

  5. A. Abdul Raheem and J. Singh, Astrophys. Space Sci. 317, 9 (2008).

    Article  ADS  Google Scholar 

  6. E. I. Abouelmagd, J. Llibre, and J. L. G. Guirao, Int. J. Bifurc. Chaos 27, 1750039 (2017).

  7. E. I. Abouelmagd, J. Astronaut. Sci. 65, 291 (2018).

    Article  ADS  Google Scholar 

  8. E. I. Abouelmagd and A. A. Ansari, New Astron. 73, 101282 (2019).

  9. A. A. Alshaery and E. I. Abouelmagd, Res. Phys. 17, 103067 (2020).

  10. E. I. Abouelmagd, J. L. Garcia Guirao, and A. K. Pal, New Astron. 75, 101319 (2020).

  11. A. A. Ansari, Astron. Rep. 65, 1178 (2021).

    Article  ADS  Google Scholar 

  12. S. V. Ershkov, D. Leshchenko, and E. I. Aboeulmagd, Eur. Phys. J. Plus 136, 387 (2021).

    Article  Google Scholar 

  13. J. Cronin, P. B. Richards, and L. H. Russell, Icarus 3, 423 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  14. K. B. Bhatnagar, Indian J. Pure Appl. Math. 2, 583 (1970).

    Google Scholar 

  15. M. Michalodimitrakis, Astrophys. Space Sci. 75, 289 (1981).

    Article  ADS  Google Scholar 

  16. D. Maranhao and J. Llibre, Celest. Mech. Dyn. Astron. 71, 1 (1998).

    Article  ADS  Google Scholar 

  17. E. Leandro, J. Differ. Equat. 226, 323 (2006).

    Article  ADS  Google Scholar 

  18. K. E. Papadakis, Planet. Space Sci. 55, 1368 (2007).

    Article  ADS  Google Scholar 

  19. M. Alvarez-Ramirez and C. Vidal, Math. Probl. Eng. 2009, 181360 (2009).

  20. A. N. Baltagiannis and K. E. Papadakis, Int. J. Bifurc. Chaos 21, 2179 (2011).

    Article  Google Scholar 

  21. J. Papadouris and K. E. Papadakis, Astrophys. Space Sci. 344, 21 (2013).

    Article  ADS  Google Scholar 

  22. R. Kumari and B. S. Kushvah, Astrophys. Space Sci. 349, 693 (2014).

    Article  ADS  Google Scholar 

  23. Abdullah, Invertis J. Sci. Technol. 7, 29 (2014).

    Google Scholar 

  24. M. Arribas, A. Abad, A. Elipe, and M. Palacios, Astrophys. Space Sci. 361, 84 (2016).

    Article  ADS  Google Scholar 

  25. M. Arribas, A. Abad, A. Elipe, and M. Palacios, Astrophys. Space Sci. 361, 270 (2016).

    Article  ADS  Google Scholar 

  26. J. Singh and A. Vincent, Few-Body Syst. 57, 83 (2016).

    Article  ADS  Google Scholar 

  27. A. A. Ansari, Appl. Appl. Math. Int. J. 13, 818 (2018).

    Google Scholar 

  28. J. Llibre, D. Pasca, and C. Valls, Celest. Mech. Dyn. Astron. 133, 53 (2021).

    Article  ADS  Google Scholar 

  29. L. G. Lukyanov, Astron. Lett. 35, 349 (2009).

    Article  ADS  Google Scholar 

  30. M. J. Zhang, C. Y. Zhao, and Y. Q. Xiong, Astrophys. Space Sci. 337, 107 (2012).

    Article  ADS  Google Scholar 

  31. A. A. Ansari, Ital. J. Pure Appl. Math. 38, 581 (2017).

    Google Scholar 

  32. A. A. Ansari, Z. Alhussain, and R. Kellil, Punjab Univ. J. Math. 51 (5), 107 (2019).

    Google Scholar 

  33. A. A. Ansari and S. N. Prasad, Astron. Lett. 46, 275 (2020).

    Article  ADS  Google Scholar 

  34. A. A. Ansari and E. I. Abouelmagd, Mod. Phys. Lett. A 36 (21) (2021).

  35. A. A. Ansari, R. Kellil, and S. K. Sahdev, New Astron. 97, 101885 (2022).

  36. S. K. Sahdev and A. A. Ansari, Sci. Int. (Lahore) 32, 771 (2015).

    Google Scholar 

  37. F. Bouaziz and A. A. Ansari, Astron. Nachr. 342, 666 (2021).

    Article  ADS  Google Scholar 

  38. A. B. Albidah, A. A. Ansari, and R. Kellil, Astron. Comput. 42, 100688 (2023).

  39. A. B. Albidah and Abdullah, Symmetry 15, 481 (2023).

    Article  ADS  Google Scholar 

  40. A. B. Albidah and A. A. Ansari, Astron. Rep. 67, 393 (2023).

    Article  ADS  Google Scholar 

  41. S. De, S. Roychowdhury, and R. Banerjee, Mon. Not. R. Astron. Soc. 501, 713 (2021).

    Article  ADS  Google Scholar 

  42. E. I. Abouelmagd and A. Mostafa, Astrophys. Space Sci. 357, 58 (2015).

    Article  ADS  Google Scholar 

  43. J. H. Jeans, Astronomy and Cosmogony (Cambridge Univ. Press, Cambridge, 1928).

    MATH  Google Scholar 

  44. I. V. Meshcherskii, Works on the Mechanics of Bodies of Variable Mass (GITTL, Moscow, 1949) [in Russian].

    MATH  Google Scholar 

  45. A. A. Ansari, M. Alam, K. R. Meena, and A. Ali, Appl. Math. Inform. Sci. 15, 189 (2021).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are thankful to the International Center for Advanced Interdisciplinary Research (ICAIR), New Delhi, India. We are also thankful to the anonymous editor and reviewer who have given us opportunity to improve the paper.

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah Equilateral Triangular Configuration in the Perturbed Circular Restricted Four-Body Problem with Kerr-like Primaries and Variable Mass Test Particle. Astron. Rep. 67, 998–1007 (2023). https://doi.org/10.1134/S1063772923100013

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923100013

Keywords:

Navigation