Skip to main content
Log in

Statistical Properties of Pulsars with the Gigahertz-Peaked Spectra

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Pulsars with the Gigahertz-Peaked Spectra (GPS) are named GPS pulsars, which means that spectra of the pulsars in the radio band turn over near 1 GHz. These pulsars are also called high-frequency inversion spectra pulsars. There are total 33 GPS pulsars discovered so far. The reason causing the turned-over spectra may be due to the free–free absorption of radio emission by the interstellar medium. We carry out the statistical research on the peak frequencies of inversion spectra, spectral indices, dispersion measure, and magnetic fields of these GPS pulsars. We find that the peak frequencies of most GPS pulsars are mainly in 0.5–1.0 GHz, the spectral indices of these GPS pulsars seems to have a bimodal distribution, which means that these GPS pulsars are possibly composed by two types of pulsars. A strong positive correlation between the periods and dispersion measure (DM) of GPS pulsars is first found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. W. Sieber, Astron. Astrophys. 28, 237 (1973).

    ADS  Google Scholar 

  2. B. Koribalski, S. Johnston, J. Weisberg, and W. Wilson, Astrophys. J. 441, 756 (1995).

    Article  ADS  Google Scholar 

  3. O. Maron, J. Kijak, M. Kramer, and R. Wielebinski, Astron. Astrophys. Suppl. Ser. 147, 195 (2000).

    Article  ADS  Google Scholar 

  4. J. Kijak, Y. Gupta, and K. Krzeszowski, Astron. Astrophys. 462, 699 (2007).

    Article  ADS  Google Scholar 

  5. J. Kijak, W. Lewandowski, O. Maron, Y. Gupta, and A. Jessner, Astron. Astrophys. 531, A16 (2011).

    Article  ADS  Google Scholar 

  6. J. Kijak, M. Dembska, W. Lewandowski, G. Melikidze, and M. Sendyk, Mon. Not. R. Astron. Soc. Lett. 418, L114 (2011).

    Article  ADS  Google Scholar 

  7. G. B. Rybicki and A. P. Lightman, Radiative Processes in Astrophysics (Wiley Interscience, New York, 1979).

    Google Scholar 

  8. S. Kameno, S. Horiuchi, Z.-Q. Shen, M. Inoue, H. Kobayashi, H. Hirabayashi, and Y. Murata, Publ. Astron. Soc. Jpn. 52, 209 (2000).

    Article  ADS  Google Scholar 

  9. J. Kijak, R. Basu, W. Lewandowski, K. Roko, and M. Dembska 840, 108 (2017).

  10. R. Basu, K. Roko, W. Lewandowski, J. Kijak, and M. Dembska, Mon. Not. R. Astron. Soc. 458, 2509 (2016).

    Article  ADS  Google Scholar 

  11. J. Kijak, R. Basu, W. Lewandowski, and K. Roźko, Astrophys. J. 923, 211 (2021).

    Article  ADS  Google Scholar 

  12. R. N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs, Astrophys. J. 129, 1993 (2005); arXiv: astro-ph/0412641.

    Google Scholar 

  13. W. Lewandowski, K. Roko, J. Kijak, and G. I. Melikidze, Astrophys. J. 808, 18 (2015).

    Article  ADS  Google Scholar 

  14. T. Pennucci, A. Possenti, P. Esposito, N. Rea, et al., Astrophys. J. 808, 81 (2015).

    Article  ADS  Google Scholar 

  15. V. Malofeev, V. Shishov, W. Sieber, A. Jessner, M. Kramer, and R. Wielebinski, Astron. Astrophys. 308, 180 (1996).

    ADS  Google Scholar 

  16. F. Jankowski, W. Van Straten, E. Keane, M. Bailes, E. Barr, S. Johnston, and M. Kerr, Mon. Not. R. Astron. Soc. 473, 4436 (2018).

    Article  ADS  Google Scholar 

  17. F. Camilo, J. Reynolds, S. Johnston, J. P. Halpern, and S. M. Ransom, Astrophys. J. 679, 681 (2008).

    Article  ADS  Google Scholar 

  18. L. Levin, M. Bailes, S. Bates, N. R. Bhat, et al., Astrophys. J. Lett. 721, L33 (2010).

    Article  ADS  Google Scholar 

  19. M. Keith, S. Johnston, L. Levin, and M. Bailes, Mon. Not. R. Astron. Soc. 416, 346 (2011).

    ADS  Google Scholar 

  20. R. Basu, K. Rozko, J. Kijak, and W. Lewandowski, Mon. Not. R. Astron. Soc. 475, 1469 (2018).

    Article  ADS  Google Scholar 

  21. S. Dai, M. E. Lower, M. Bailes, F. Camilo, et al., Astrophys. J. Lett. 874, L14 (2019).

    Article  ADS  Google Scholar 

  22. P. Torne, R. Eatough, R. Karuppusamy, M. Kramer, et al., Mon. Not. R. Astron. Soc. Lett. 451, L50 (2015).

    Article  ADS  Google Scholar 

  23. A. Suresh, J. M. Cordes, S. Chatterjee, V. Gajjar, K. I. Perez, A. P. Siemion, and D. C. Price, Astrophys. J. 921, 101 (2021).

    Article  ADS  Google Scholar 

  24. C.-Y. Chu, C. Ng, A. K. Kong, and H.-K. Chang, Mon. Not. R. Astron. Soc. 503, 1214 (2021).

    Article  ADS  Google Scholar 

  25. F. C. Michel, Rev. Mod. Phys. 54, 1 (1982).

    Article  ADS  Google Scholar 

  26. T. Murphy, D. L. Kaplan, M. E. Bell, J. Callingham, et al., Publ. Astron. Soc. Austral. 34, e020 (2017).

  27. K. Stovall, P. Ray, J. Blythe, J. Dowell, et al., Astrophys. J. 808, 156 (2015).

    Article  ADS  Google Scholar 

  28. V. Izvekova, A. Kuzmin, V. Malofeev, and Y. P. Shitov, Astrophys. Space Sci. 78, 45 (1981).

    Article  ADS  Google Scholar 

  29. B. Marcote, M. Ribó, J. Paredes, and C. Ishwara-Chandra, Mon. Not. R. Astron. Soc. 451, 59 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongbing Cai or Li Chen.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Cai, H., Chen, L. et al. Statistical Properties of Pulsars with the Gigahertz-Peaked Spectra. Astron. Rep. 67, 837–845 (2023). https://doi.org/10.1134/S1063772923080061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923080061

Keywords:

Navigation