Skip to main content
Log in

Effect of Variable Mass on N–R Basins of Convergence in Photogravitational Magnetic Binary Problem

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

In this paper, we consider the photogravitational magnetic binary problem (PMBP) in the framework of a restricted three-body problem. In this model, the mass of a third body is variable and both primaries are considered as magnetic dipoles. Additionally, the effect of gravitational forces of both primaries is also considered. The effect of variable mass parameters \(\alpha \) and \(\beta \) on the existence and evolution of equilibrium points and their stability are explored. There is no collinear equilibrium points in the present model due to the effect of these parameters. All non-collinear equilibrium points are found to be unstable and the effect on positions of equilibrium points is also significant. The study of Newton–Raphson (N–R) basins of convergence and the existence of fractals in the present model is a crucial aspect of this work. Due to inclusion of variable mass parameters, the shape of basins of convergence becomes infinite in some cases. Pie charts are drawn to explain the relation between the number of iterations of N–R method and the number of initial conditions converging towards equilibrium points. Further, it is observed that the initial conditions taking less iterations of Newton–Raphson method are found away from the boundaries of basins of convergence. Due to variable mass parameters, the degree of unpredictability along boundaries of basins of convergence increases and the existence of a fractal is found in most of the cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. E. P. Razbitnaya, Sov. Astron. 5, 393 (1961).

    ADS  Google Scholar 

  2. A. K. Shrivastava and B. Ishwar, Cel. Mech. 30, 323 (1983).

    Article  ADS  Google Scholar 

  3. J. Singh and B. Ishwar, Cel. Mech. 32, 297 (1984).

    Article  ADS  Google Scholar 

  4. J. Singh and B. Ishwar, Cel. Mech. 35, 201 (1985).

    Article  ADS  Google Scholar 

  5. R. K. Das, A. K. Shrivastava, and B. Ishwar, Cel. Mech. 45, 387 (1988).

    Article  ADS  Google Scholar 

  6. J. Singh, Astrophys. Space Sci. 314, 281 (2008).

    Article  ADS  Google Scholar 

  7. M. J. Zhang, C. Y. Zhao, and Y. Q. Xiong, Astrophys. Space Sci. 337, 107 (2012).

    Article  ADS  Google Scholar 

  8. E. I. Abouelmagd, H. H. Selim, M. Z. Minglibayev, and A. K. Kushekbay, Astron. Rep. 65, 1170 (2021).

    Article  ADS  Google Scholar 

  9. E. I. Abouelmagd and A. A. Ansari, Astron. Rep. 66, 64 (2022).

    Article  ADS  Google Scholar 

  10. A. A. Ansari and E. I. Abouelmagd, Mod. Phys. Lett. A 36, 2150150 (2021).

  11. G. Mahato, A. K. Pal, S. Alhowaity, E. I. Abouelmagd, and B. S. Kushvah, Appl. Sci. 12, 424 (2022).

    Article  Google Scholar 

  12. J. H. Jeans, Astronomy and Cosmogony (Cambridge Univ. Press, Cambridge, 1928).

    MATH  Google Scholar 

  13. I. V. Meshcherskii, Works on the Mechanics of Variable-Mass Bodies (GITTL, Moscow, 1949) [in Russian].

    MATH  Google Scholar 

  14. I. V. Meshcherskii, Works on the Mechanics of Variable-Mass Bodies (Gostekhizdat, Moscow, 1952) [in Russian].

    MATH  Google Scholar 

  15. J. Singh and O. Leke, Astrophys. Space Sci. 326, 305 (2010).

    Article  ADS  Google Scholar 

  16. C. F. Stormer, Arch. Sci. Phys. Nat. (Geneva) 24, 350 (1907).

    Google Scholar 

  17. A. G. Mavraganis, Astrophys. Space Sci. 54, 305 (1978).

    Article  ADS  Google Scholar 

  18. A. G. Mavraganis, Cel. Mech. 23, 287 (1981).

    Article  ADS  Google Scholar 

  19. C. L. Goudas and E. G. Petsagourakis, in Stability of the Solar System and its Minor Natural and Artificial Bodies, Cortina d’Ampezzo, Italy, 1984, Ed. by V. G. Szebehely (Springer, Dordrecht, 1985); NATO Adv. Study Inst., Ser. C 154, 349 (1985).

  20. T. J. Kalvouridis and M. Ch. Gousidou-Koutita, Appl. Mech. 3, 541 (2012).

    Google Scholar 

  21. E. E. Zotos, Int. J. Non-Lin. Mech. 90, 111 (2017).

    Google Scholar 

  22. V. Kumar, M. Arif, and M. S. Ullah, New Astron. 83, 101475 (2021).

  23. J. Aguirre, R. L. Viana, and M. A. F. Sanjuán, Rev. Mod. Phys. 81, 333 (2009).

    Article  ADS  Google Scholar 

  24. J. M. Seoane and M. A. Sanjuán, Rep. Prog. Phys. 76, 016001 (2012).

  25. J. C. Sprott and A. Xiong, Chaos 25, 083101 (2015).

  26. M. S. Suraj, R. Aggarwal, K. Shalini, and M. C. Asique, New Astron. 63, 15 (2018).

    Article  ADS  Google Scholar 

  27. J. E. Osorio-Vargas, G. A. González, and F. L. Dubeibe, Int. J. Bifurc. Chaos 30, 2030003 (2020).

  28. V. Kumar, P. Sharma, R. Aggarwal, S. Yadav, and B. Kaur, Astrophys. Space Sci. 365 (6), 101 (2020).

    Article  ADS  Google Scholar 

  29. E. E. Zotos, E. I. Abouelmagd, and N. S. A. E. Motelp, New Astron. 81, 101444 (2020).

  30. E. E. Zotos, W. Chen, E. I. Abouelmagd, and H. Han, Chaos, Solitons Fractals 134, 109704 (2020).

  31. M. S. Suraj, R. Aggarwal, M. C. Asique, and A. Mittal, Comput. Math. Methods 3, e1161 (2021).

  32. A. Daza, A. Wagemakers, B. Georgeot, D. Guéry-Odelin, and M. A. F. Sanjuán, Sci. Rep. 6, 31416 (2016).

    Article  ADS  Google Scholar 

  33. A. Daza, G. Bertrand, D. Guéry-Odelin, A. Wagemakers, and M. A. F. Sanjuán, Phys. Rev. A 95, 013629 (2017).

  34. A. Narayan, A. Chakraborty, and A. Dewangan, Few-Body Syst. 59 (3), 43 (2018).

    Article  ADS  Google Scholar 

  35. E. E. Zotos, M. S. Suraj, R. Aggarwal, and S. K. Satya, Few-Body Syst. 59 (4), 69 (2018).

    Article  ADS  Google Scholar 

  36. V. Kumar, M. J. Idrisi, and M. S. Ullah, New Astron. 82, 101451 (2021).

  37. Mathematica, Version 11.0.1 (Wolfram Research, Inc., Champaign, IL, 2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sawan Kumar Marig.

Ethics declarations

Authors declare that there is no conflict of interests regarding the publication of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Marig, S.K. Effect of Variable Mass on N–R Basins of Convergence in Photogravitational Magnetic Binary Problem. Astron. Rep. 67, 194–208 (2023). https://doi.org/10.1134/S1063772923020105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923020105

Keywords:

Navigation