Skip to main content
Log in

Eliminating the Hubble Tension in the Presence of the Interconnection between Dark Energy and Matter in the Modern Universe

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

It is accepted in modern cosmology that the scalar field responsible for the inflationary stage of the early Universe is completely transformed into matter. It is assumed that the accelerated expansion is currently driven by dark energy (DE), which is likely determined by Einstein’s cosmological constant, unrelated to the scalar field responsible for inflation. We consider a cosmological model in which DE can currently have two components, one of which is Einstein’s constant (\(\Lambda \)) and the other, smaller dark energy variable component DEV (\({{\Lambda }_{V}}\)), is associated with the remnant of the scalar field that caused inflation after the main part of the scalar field has turned into matter. We consider only the stages of evolution of the Universe after recombination (\(z \lesssim 1100\)), where dark matter (DM) is the predominant component of matter. It is assumed that the transformation of the scalar field into matter continues at the present time and is accompanied by the reverse process of the transformation of DM into a scalar field. The interconnection between DM and DEV, which leads to a linear relationship between the energy densities of these components after recombination \({{\rho }_{{{\text{DM}}}}} = \alpha {\kern 1pt} {{\rho }_{{{\text{DEV}}}}}\), is considered. Variants with a dependence of the coefficient \(\alpha (z)\) on the redshift \(z\) are also considered. One of the problems that have arisen in modern cosmology, called Hubble Tension (HT), is the discrepancy between the present values of the Hubble constant (\({{H}_{0}}\)) measured from observations of the Universe at small redshifts (\(z \lesssim 1\)) and the values found from fluctuations of the cosmic microwave background in the Universe at large redshifts (\(z \approx 1100\)). In the model under consideration, this discrepancy can be explained by the deviation of the existing cosmological model from the conventional \(\Lambda \) cold dark matter (CDM) model of the flat Universe by the action of the additional dark energy component DEV at the stages after recombination. Within this extended model, we consider various \(\alpha {\kern 1pt} (z)\) functions that can eliminate the HT. To maintain the ratio of DEV and DM energy densities close to constant over the interval \(0 \leqslant z \lesssim 1100\), it is necessary to assume the existence of a wide spectrum of dark matter particle masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Y. B. Zeldovich and I. D. Novikov, Relativistic Astrophysics, 2: Structure and Evolution of the Universe (Nauka, Moscow, 1975; Univ. of Chicago Press, 1983).

  2. A. G. Riess, Nat. Rev. Phys. 2, 10 (2020).

    Article  Google Scholar 

  3. W. L. Freedman, Astrophys. J. 919, 16 (2021).

    Article  ADS  Google Scholar 

  4. G. Bisnovatyi-Kogan, arXiv: 2002.05602 [astro-ph.CO] (2020).

  5. G. S. Bisnovatyi-Kogan, Universe 7 (11), 412 (2021).

    Article  ADS  Google Scholar 

  6. D. N. Spergel, L. Verde, H. V. Peiris, E. Komatsu, et al., Astrophys. J. Suppl. 148, 175 (2003).

    Article  Google Scholar 

  7. P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, et al., Astron. Astrophys. 594, A13 (2016).

    Article  Google Scholar 

  8. N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, et al., Astron. Astrophys. 641, A6 (2020).

    Article  Google Scholar 

  9. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, et al., Astron. J. 116, 1009 (1998).

    Article  ADS  Google Scholar 

  10. S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, et al., Astrophys. J. 517, 565 (1999).

    Article  ADS  Google Scholar 

  11. A. G. Riess, L. M. Macri, S. L. Hoffmann, D. Scolnic, et al., Astrophys. J. 826, 56 (2016).

    Article  ADS  Google Scholar 

  12. A. G. Riess, S. Casertano, W. Yuan, L. Macri, et al., Astrophys. J. 861, 126 (2018).

    Article  ADS  Google Scholar 

  13. A. G. Riess, S. Casertano, W. Yuan, L. M. Macri, and D. Scolnic, Astrophys. J. 876, 85 (2019).

    Article  ADS  Google Scholar 

  14. K. C. Wong, S. H. Suyu, G. C.-F. Chen, C. E. Rusu, et al., Mon. Not. R. Astron. Soc. 498, 1420 (2020).

    Article  ADS  Google Scholar 

  15. W. Yuan, A. G. Riess, L. M. Macri, S. Casertano, and D. M. Scolnic, Astrophys. J. 886, 61 (2019).

    Article  ADS  Google Scholar 

  16. L. Verde, T. Treu, and A. G. Riess, Nat. Astron. 3, 891 (2019).

    Article  ADS  Google Scholar 

  17. C. A. Bengaly, C. Clarkson, and R. Maartens, J. Cosmol. Astropart. Phys., No. 05, 053 (2020).

  18. E. Di Valentino, O. Mena, S. Pan, L. Visinelli, et al., Class. Quantum Grav. 38, 153001 (2021).

  19. T. Karwal and M. Kamionkowski, Phys. Rev. D 94, 103523 (2016).

  20. E. Mörtsell and S. Dhawan, J. Cosmol. Astropart. Phys., No. 09, 025 (2018).

  21. V. Poulin, T. L. Smith, T. Karwal, and M. Kamionkowski, Phys. Rev. Lett. 122, 221301 (2019).

  22. W. Yang, S. Pan, E. Di Valentino, R. C. Nunes, S. Vagnozzi, and D. F. Mota, J. Cosmol. Astropart. Phys., No. 09, 019 (2018).

  23. S. Vagnozzi, Phys. Rev. D 102, 023518 (2020).

  24. E. di Valentino, A. Melchiorri, O. Mena, and S. Vagnozzi, Phys. Dark Universe 30, 100666 (2020).

  25. C. Umiltá, M. Ballardini, F. Finelli, and D. Paoletti, J. Cosmol. Astropart. Phys. 2015 (08), 017 (2015).

  26. M. Ballardini, F. Finelli, C. Umiltá, and D. Paoletti, J. Cosmol. Astropart. Phys., No. 05, 067 (2016).

  27. M. Rossi, M. Ballardini, M. Braglia, F. Finelli, D. Paoletti, A. A. Starobinsky, and C. Umiltá, Phys. Rev. D. 100, 103524 (2019).

  28. L. Knox and M. Millea, Phys. Rev. D 101, 043533 (2020).

  29. V. V. Lukovic, B. S. Haridasu, and N. Vittorio, Mon. Not. R. Astron. Soc. 491, 2075 (2020).

    ADS  Google Scholar 

  30. W. Kenworthy, D. Scolnic, and A. Riess, Astrophys. J. 875, 145 (2019).

    Article  ADS  Google Scholar 

  31. E. Mörtsell and S. Dhawan, J. Cosmol. Astropart. Phys., No. 09, 025 (2018).

  32. J. Sakstein and M. Trodden, Phys. Rev. Lett. 124, 161301 (2020).

  33. A. Gogoi, R. Kumar Sharma, P. Chanda, and S. Das, Astrophys. J. 915, 132 (2021).

    Article  ADS  Google Scholar 

  34. G.-B. Zhao, M. Raveri, L. Pogosian, Y. Wang, et al., Nat. Astron. 1, 627 (2017).

    Article  ADS  Google Scholar 

  35. M. Mortonson, W. Hu, and D. Huterer, Phys. Rev. D 80, 067301 (2009).

  36. X. Li and A. Shafieloo, Astrophys. J. Lett. 883, L3 (2019).

    Article  ADS  Google Scholar 

  37. L. Parker and D. A. Vanzella, Phys. Rev. D 69, 104009 (2004).

  38. G. Steigman, D. N. Schramm, and J. E. Gunn, Phys. Lett. B 66, 202 (1977).

    Article  ADS  Google Scholar 

  39. L. Amendola, Phys. Rev. D. 62, 043511 (2000).

  40. M.-X. Lin, M. Raveri, and W. Hu, Phys. Rev. D 99, 043514 (2019).

  41. W. Hu and I. Sawicki, Phys. Rev. D 76, 064004 (2007).

  42. A. Einstein, in The Collected Papers of Albert Einstein, 1914–1917 (Princeton Univ. Press, Princeton, 1996), Vol. 6.

    MATH  Google Scholar 

  43. A. Guth, The Inflationary Universe (Perseus Books, Reading, MA, 1998).

    Google Scholar 

  44. A. D. Linde, Phys. Lett. B 129, 177 (1983).

    Article  ADS  Google Scholar 

  45. A. A. Starobinsky, Phys. Lett. B 117, 175 (1982).

    Article  ADS  Google Scholar 

  46. V. F. Mukhanov and G. V. Chibisov, Sov. Phys. JETP 56, 258 (1982).

    ADS  Google Scholar 

  47. K. Arun, S. Gudennavar, and C. Sivaram, Adv. Space Res. 60, 166 (2017).

    Article  ADS  Google Scholar 

  48. D. Samart and P. Channuie, Eur. Phys. J. C 79, 347 (2019).

    Article  ADS  Google Scholar 

  49. D. S. Gorbunov and V. A. Rubakov, Introduction to the Early Universe Theory. The Hot Big Bang Theory (Inst. Yad. Issled. RAN, Moscow, 2007) [in Russian].

    MATH  Google Scholar 

  50. A. A. Fridman, Usp. Fiz. Nauk 80, 439 (1963).

    Article  Google Scholar 

  51. P. J. E. Peebles, Principles of Physical Cosmology (Princeton Univ. Press, Princeton, 1993).

    MATH  Google Scholar 

  52. Age of the Universe, Wikipedia (2021, in press). https://en.wikipedia.org/wiki/Ageoftheuniverse.

  53. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Series and Products (GIFML, Moscow, 1963; Academic, New York, 1980).

Download references

ACKNOWLEDGMENTS

The authors are grateful to O.Yu. Tsupko for useful discussions.

Funding

GSBK’s study was in part supported by the Russian Foundation for Basic Research, grant no. 20-52-12053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Bisnovatyi-Kogan.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisnovatyi-Kogan, G.S., Nikishin, A.M. Eliminating the Hubble Tension in the Presence of the Interconnection between Dark Energy and Matter in the Modern Universe. Astron. Rep. 67, 115–124 (2023). https://doi.org/10.1134/S1063772923020038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772923020038

Keywords:

Navigation