Skip to main content
Log in

Triaxial Primaries in Collinear Circular Perturbed 4-body Configuration

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Analytical as well as numerical studies are presented for the motion properties of the smallest body under the influence of the triaxial primaries, the small perturbations in Coriolis and centrifugal forces in the collinear circular restricted four-body problem. The mean motion and equations of motion are determined under these influences. The collinear and non-collinear Lagrangian points are evaluated. After determining the Jacobian integral and with the use of energy constant, we illustrate the zero-velocity curves. Lastly, we examine the stability states for the Lagrangian points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. K. B. Bhatnagar, Indian J. Pure Appl. Math. 2, 583 (1970).

    Google Scholar 

  2. M. Michalodimitrakis, Astrophys. Space Sci. 75, 289 (1981).

    Article  ADS  Google Scholar 

  3. D. Maranhao and J. Libre, Cel. Mech. Dyn. Astron. 71, 1 (1998).

    Article  ADS  Google Scholar 

  4. E. Leandro, J. Differ. Equat. 226, 323 (2006).

    Article  ADS  Google Scholar 

  5. K. Papadakis, Planet. Space Sci. 55, 1368 (2007).

    Article  ADS  Google Scholar 

  6. T. J. Kalvouridis, M. Arribas, and A. Elipe, Planet. Space Sci. 55, 475 (2007).

    Article  ADS  Google Scholar 

  7. A. N. Baltagiannis and K. E. Papadakis, Int. J. Bifurc. Chaos 21, 2179 (2011).

    Article  Google Scholar 

  8. J. Papadouris and K. Papadakis, Astrophys. Space Sci. 344, 21 (2013).

    Article  ADS  Google Scholar 

  9. M. Arribas, A. Abad, A. Elipe, and M. Palacios, Astrophys. Space Sci. 361, 84 (2016).

    Article  ADS  Google Scholar 

  10. M. Arribas, A. Abad, A. Elipe, and M. Palacios, Astrophys. Space Sci. 361, 270 (2016).

    Article  ADS  Google Scholar 

  11. J. Singh and A. Vincent, Few-Body Syst. 57, 83 (2016).

    Article  ADS  Google Scholar 

  12. E. I. Abouelmagd and A. A. Ansari, New Astron. 73, 101282 (2019).

  13. E. I. Abouelmagd and A. A. Ansari, Astron. Rep. 66, 64 (2022).

    Article  ADS  Google Scholar 

  14. A. A. Ansari and S. N. Prasad, Astron. Lett. 46, 275 (2020).

    Article  ADS  Google Scholar 

  15. A. A. Ansari, Astron. Rep. 65, 1179 (2021).

    Article  ADS  Google Scholar 

  16. J. Cronin, P. B. Richards, and L. H. Russell, Icarus 3, 423 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  17. F. Gabern and A. Jorba, Discr. Contin. Dyn. Syst., Ser. B 1, 143 (2001).

    Google Scholar 

  18. L. Mohn and J. Kevorkin, Astron. J. 72, 959 (1967).

    Article  ADS  Google Scholar 

  19. D. Scheeres, Cel. Mech. Dyn. Astron. 70, 75 (1998).

    Article  ADS  Google Scholar 

  20. D. J. Scheeres and J. Bellerose, Dyn. Syst.: Int. J. 20, 23 (2005).

    Article  Google Scholar 

  21. M. Palacios, M. Arribas, A. Abad, and A. Elipe, Cel. Mech. 131, 16 (2019).

    Article  ADS  Google Scholar 

  22. A. A. Ansari, Appl. Appl. Math. Int. J. 13, 818 (2018).

    Google Scholar 

  23. R. Kumari and B. S. Kushvah, Astrophys. Space Sci. 349, 693 (2014).

    Article  ADS  Google Scholar 

  24. K. B. Bhatnagar and P. P. Hallan, Cel. Mech. 18, 105 (1979).

    Article  ADS  Google Scholar 

  25. K. B. Bhatnagar and P. P. Hallan, Cel. Mech. 20, 95 (1979).

    Article  ADS  Google Scholar 

  26. J. Singh and B. Ishwar, Cel. Mech. 35, 201 (1985).

    Article  ADS  Google Scholar 

  27. A. Abdulraheem and J. Singh, Astrophys. Space Sci. 317, 9 (2008).

    Article  ADS  Google Scholar 

  28. A. A. Ansari, Invert. J. Sci. Technol. 7, 29 (2014).

    Google Scholar 

  29. R. K. Sharma, Z. A. Taqvi, and K. B. Bhatnagar, Cel. Mech. Dyn. Astron. 79, 119 (2001).

    Article  ADS  Google Scholar 

  30. A. A. Ansari and E. I. Abouelmagd, Astron. Nachr. 341, 656 (2020).

    Article  ADS  Google Scholar 

  31. J. Libre, D. Paşca, and C. Valls, Cel. Mech. Dyn. Astron. 133, 53 (2021). https://doi.org/10.1007/s10569-021-10052-6

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors thank the anonymous reviewer for giving us an opportunity to improve our paper up to this final stage.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdullah A. Ansari or S. K. Sahdev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, A.A., Sahdev, S.K. Triaxial Primaries in Collinear Circular Perturbed 4-body Configuration. Astron. Rep. 66, 1074–1081 (2022). https://doi.org/10.1134/S1063772922110026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922110026

Keywords:

Navigation