Skip to main content
Log in

On Densification of the ICRF Catalog and the Reliability of Its Link to the Gaia Catalog

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Two possible sources of random and systematic errors of a new method for determining the parameters of the relative orientation of the catalogs of positions of extragalactic sources implementing the International Celestial Reference System (ICRS) are investigated. This method is based on the median filtering of the differences in the coordinates of common objects in the compared catalogs, distributed over equal cells on the celestial sphere, forming a pixelation grid. The study was based on a comparison of the latest versions of the ICRS implementation in the radio (International Celestial Reference Frame, ICRF) and optical (Gaia-CRF) bands. Based on several computational tests, the dependence of the results of determining the orientation parameters between the ICRF and Gaia-CRF catalogs on the number of cells and on the displacement of the pixelization grid relative to the origin in right ascension was verified. It turned out that the results of calculations obtained in different test cases differ noticeably, but these differences are within the limits of formal errors in determining the orientation parameters. Additional test calculations showed that the main source of these differences is the uneven distribution of the common sources of the compared catalogs over the celestial sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. https://www.iau.org/science/scientific_bodies/working_groups/329/

  2. http://www.gaoran.ru/english/as/ac_vlbi/, https://github.com/zmalkin4gt/SREAG

  3. https://ui.adsabs.harvard.edu/

  4. http://www.gnuplot.info/

REFERENCES

  1. M. Feissel and F. Mignard, Astron. Astrophys. 331, L33 (1998).

    ADS  Google Scholar 

  2. P. Charlot, C. S. Jacobs, D. Gordon, S. Lambert, et al., Astron. Astrophys. 644, A159 (2020); arXiv: 2010.13625 [astro-ph.GA].

    Article  Google Scholar 

  3. Gaia Collaboration, S. A. Klioner, L. Lindegren, F. Mignard, J. Hernández, et al., Astron. Astrophys. (2022, in press); arXiv: 2204.12574 [astro-ph.IM].

  4. H. G. Walter and O. J. Sovers, Astrometry of Fundamental Catalogues: The Evolution from Optical to Radio Reference Frames (Springer, Heidelberg, 2000).

    Book  Google Scholar 

  5. V. V. Vityazev, Analysis of Astrometric Catalogues Using Spherical Functions (SPb. State Univ., St. Petersburg, 2017) [in Russian].

  6. F. Mignard, S. Klioner, L. Lindegren, U. Bastian, et al., Astron. Astrophys. 595, A5 (2016); arXiv: 1609.07255 [astro-ph.IM].

    Article  Google Scholar 

  7. J. Frouard, M. C. Johnson, A. Fey, V. V. Makarov, and B. N. Dorland, Astron. J. 155, 229 (2018); arXiv: 1804.10240 [astro-ph.GA].

    Article  ADS  Google Scholar 

  8. N. Liu, Z. Zhu, and J. C. Liu, Astron. Astrophys. 609, A19 (2018).

    Article  ADS  Google Scholar 

  9. N. Liu, S. B. Lambert, and Z. Zhu, Astron. Astrophys. 620, A160 (2018).

    Article  ADS  Google Scholar 

  10. F. Mignard, S. A. Klioner, L. Lindegren, J. Hernández, U. Bastian, and A. Bombrun, Astron. Astrophys. 616, A14 (2018); arXiv: 1804.09377 [astro-ph.GA].

    Article  Google Scholar 

  11. M. Karbon and A. Nothnagel, Astron. Astrophys. 630, A101 (2019); arXiv: 1908.11697 [astro-ph.IM].

    Article  ADS  Google Scholar 

  12. V. V. Makarov, C. T. Berghea, J. Frouard, A. Fey, and H. R. Schmitt, Astrophys. J. 873, 132 (2019); arXiv: 1811.10117 [astro-ph.GA].

    Article  ADS  Google Scholar 

  13. D. Mayer and J. Böhm, in International Association of Geodesy Symposia Book Series (Springer, Berlin, 2020). https://doi.org/10.1007/1345_2020_99

    Book  Google Scholar 

  14. N. Liu, S. B. Lambert, Z. Zhu, and J.-C. Liu, Astron. Astrophys. 634, A28 (2020); arXiv: 1912.07396 [astro-ph.IM].

    Article  ADS  Google Scholar 

  15. O. Titov and S. Lambert, Astron. Astrophys. 559, A95 (2013); arXiv: 1310.2723 [astro-ph.IM].

    Article  ADS  Google Scholar 

  16. Z. Malkin, Mon. Not. R. Astron. Soc. 506, 5540 (2021); arXiv: 2107.08967 [astro-ph.IM].

    Article  ADS  Google Scholar 

  17. Z. Malkin, Astron. J. 158, 158 (2019); arXiv: 1909.04701 [astro-ph.IM].

    Article  ADS  Google Scholar 

  18. K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and M. Bartelmann, Astrophys. J. 622, 759 (2005); arXiv: astro-ph/0409513.

    Article  ADS  Google Scholar 

  19. R. G. Crittenden, Astrophys. Lett. Commun. 37, 377 (2000); arXiv: astro-ph/9811273.

    ADS  Google Scholar 

  20. J. A. Kegerreis, V. R. Eke, P. Gonnet, D. G. Korycansky, R. J. Massey, M. Schaller, and L. F. A. Teodoro, Mon. Not. R. Astron. Soc. 487, 5029 (2019); arXiv: 1901.09934 [astro-ph.EP].

    Article  ADS  Google Scholar 

  21. V. V. Makarov and D. W. Murphy, Astron. J. 134, 367 (2007); arXiv: 0705.3267 [astro-ph].

    Article  ADS  Google Scholar 

  22. F. Mignard and S. Klioner, Astron. Astrophys. 547, A59 (2012); arXiv: 1207.0025 [astro-ph.IM].

    Article  ADS  Google Scholar 

  23. V. V. Vityazev and A. S. Tsvetkov, Mon. Not. R. Astron. Soc. 442, 1249 (2014).

    Article  ADS  Google Scholar 

  24. S. Kopeikin and V. Makarov, Astron. J. 131, 1471 (2006).

    Article  ADS  Google Scholar 

  25. Z. Malkin, Mon. Not. R. Astron. Soc. 445, 845 (2014); arXiv: 1409.0504 [astro-ph.IM].

    Article  ADS  Google Scholar 

  26. Z. Malkin, Astrophys. J. Suppl. 239, 20 (2018); arXiv: 1810.06029 [astro-ph.IM].

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to the anonymous referee for useful comments on the original version of the article. In preparing the article, the SAO/NASA Astrophysics Data SystemFootnote 3 (ADS) abstract database was used. The figures were prepared using the gnuplot program.Footnote 4

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. M. Malkin.

Additional information

Translated by T. Sokolova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malkin, Z.M. On Densification of the ICRF Catalog and the Reliability of Its Link to the Gaia Catalog. Astron. Rep. 66, 778–785 (2022). https://doi.org/10.1134/S1063772922090086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922090086

Keywords:

Navigation