Skip to main content
Log in

A Note on Modified Restricted Three-Body Problem

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The belief that celestial bodies as perfect spheres results in certain idealistic conditions because most often they are in irregular shapes. With this in mind, we conduct an analysis to study the restricted three-body problem by taking the primaries as oblate spheroids. The modified mean motion expression [1] is used by incorporating the secular perturbation effect due to oblateness of the primaries on mean anomaly, argument of perigee and right ascension of ascending node. The model possesses five equilibrium points, which are subsequently affected by the oblateness parameters. Furthermore, we have studied the stability of the equilibrium points and it is observed that the collinear equilibrium points are always unstable. However, the non-collinear equilibrium points are stable for some combinations of the involved parameters. We have also plotted the zero velocity curves of the infinitesimal body for different values of the Jacobian constant and oblateness parameter. It has been observed that the value of the Jacobian constant has been playing a vital role in obtaining the permissible regions of motion of the infinitesimal body. Further, the results obtained of the study are applied to study the motion of a satellite in the Saturn–Titan system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. https://ssd.jpl.nasa.gov/sbdb.cgi.

REFERENCES

  1. R. K. Sharma, H. Sellamuthu, and A. A. Jency, in Proceedings of the AAS AIAA Astrodynamics Specialist Conference (2020), p. 20.

  2. V. Szebehely, Theory of Orbits, the Restricted Problem of Three Bodies (Academic, New York, 1967).

    MATH  Google Scholar 

  3. P. Subbarao and R. K. Sharma, Astron. Astrophys. 43, 381 (1975).

    ADS  Google Scholar 

  4. R. K. Sharma and P. V. Subbarao, Cel. Mech. Dyn. Astron. 13, 137 (1976).

    Article  Google Scholar 

  5. C. N. Douskos and V. V. Markellos, Astron. Astrophys. 44, 357 (2006).

    Article  ADS  Google Scholar 

  6. R. K. Sharma and P. V. Subbarao, Cel. Mech. Dyn. Astron. 12, 189 (1975).

    Article  Google Scholar 

  7. R. K. Sharma, Indian J. Pure Appl. Math. 6, 1099 (1975).

    ADS  MathSciNet  Google Scholar 

  8. R. K. Sharma, Astrophys. Space Sci. 135, 271 (1987).

    Article  ADS  Google Scholar 

  9. K. B. Bhatnagar and P. P. Hallan, Cel. Mech. Dyn. Astron. 20, 95 (1979).

    Article  Google Scholar 

  10. A. Abdul Raheem and J. Singh, Astron. J. 131, 1880 (2006).

    Article  ADS  Google Scholar 

  11. J. Singh and S. Haruna, Astrophys. Space Sci. 349, 107 (2014).

    Article  ADS  Google Scholar 

  12. A. AbdulRaheem and J. Singh, Astrophys. Space Sci. 317, 9 (2008).

    Article  ADS  Google Scholar 

  13. A. Mittal, I. Ahmad, and K. B. Bhatnagar, Astrophys. Space Sci. 323, 65 (2009).

    Article  ADS  Google Scholar 

  14. J. Singh and J. M. Begha, Astrophys. Space Sci. 332, 319 (2011).

    Article  ADS  Google Scholar 

  15. E. I. Abouelmagd and M. A. Sharaf, Astrophys. Space Sci. 344, 321 (2013).

    Article  ADS  Google Scholar 

  16. M. J. Idrisi and Z. A. Taqvi, Astrophys. Space Sci. 348, 41 (2013).

    Article  ADS  Google Scholar 

  17. E. I. Abouelmagd, H. M. Asiri, and M. A. Sharaf, Meccanica 48, 2479 (2013).

    Article  MathSciNet  Google Scholar 

  18. A. P. Markeev, Libration Points in Celestial Mechanics and Cosmic Dynamics (Nauka, Moscow, 1978) [in Russian].

    MATH  Google Scholar 

  19. A. P. Markeev, Linear Hamiltonian Systems and Some Problems of Stability of Satellite’s Motion Relative to Its Center of Mass (Regul. Khaot. Dinam., Moscow, 2009) [in Russian].

    Google Scholar 

  20. M. L. Lidov and M. A. Vashkov’yak, Kosm. Issled. 31, 75 (1993).

    ADS  Google Scholar 

  21. V. V. Beletsky, Reguläre und chaotische Bewegung starrer Körper (Vieweg and Teubner, Wiesbaden, 1995). https://doi.org/10.1007/978-3-322-99603-9

    Book  MATH  Google Scholar 

  22. A. Khan, R. Sharma, and L. M. Saha, Astron. J. 116, 2058 (1998).

    Article  ADS  Google Scholar 

  23. Z. A. Taqvi, M. Saxena, and L. M. Saha, Proc. Natl. Acad. Sci. India, Sect. A 79, 259 (2009).

    Google Scholar 

  24. S. V. Ershkov, J. Astrophys. Astron. 38, 5 (2017).

    Article  ADS  Google Scholar 

  25. F. L. Chernousko, L. D. Akulenko, and D. D. Leshchenko, Evolution of Motions of a Rigid Body about Its Center of Mass (Springer, Cham, 2017). https://doi.org/10.1007/978-3-319-53928-7

    Book  MATH  Google Scholar 

  26. S. Ershkov, D. Leshchenko, and E. I. Abouelmagd, Eur. Phys. J. Plus 136, 387 (2021).

    Article  Google Scholar 

  27. K. B. Bhatnagar and J. M. Chawla, Cel. Mech. Dyn. Astron. 16, 129 (1977).

    Article  Google Scholar 

  28. M. Khanna and K. B. Bhatnagar, Indian J. Pure Appl. Math. 30, 721 (1999).

    ADS  Google Scholar 

  29. R. Aggarwal, Z. A. Taqvi, and I. Ahmad, Bull. Astron. Soc. India 35, 1 (2006).

    Google Scholar 

  30. B. S. Kushvah, J. P. Sharma, and B. Ishwar, Astrophys. Space Sci. 312, 279 (2007).

    Article  ADS  Google Scholar 

  31. B. S. Kushvah, Astrophys. Space Sci. 315, 231 (2008).

    Article  ADS  Google Scholar 

  32. J. Singh and O. Leke, Astrophys. Space Sci. 326, 305 (2010).

    Article  ADS  Google Scholar 

  33. J. Singh and N. Bello, J. Astrophys. Astron. 35, 701 (2014).

    Article  ADS  Google Scholar 

  34. J. Singh and N. Bello, J. Astrophys. Astron. 35, 685 (2014).

    Article  ADS  Google Scholar 

  35. J. Singh and J. J. Taura, J. Astrophys. Astron. 35, 729 (2014).

    Article  ADS  Google Scholar 

  36. J. Singh and A. B. Emmanuel, Astrophys. Space Sci. 353, 97 (2014).

    Article  ADS  Google Scholar 

  37. J. Singh and T. O. Amuda, J. Astrophys. Astron. 36, 291 (2015).

    Article  ADS  Google Scholar 

  38. J. Singh and T. O. Amuda, Eur. Phys. J. Plus 131, 137 (2016).

    Article  Google Scholar 

  39. J. Singh and T. O. Amuda, Indian J. Phys. 92, 1347 (2018).

    Article  ADS  Google Scholar 

  40. J. Singh and T. O. Amuda, J. Astrophys. Astron. 40, 5 (2019).

    Article  ADS  Google Scholar 

  41. M. Jain and R. Aggarwal, Astrophys. Space Sci. 358, 51 (2015).

    Article  ADS  Google Scholar 

  42. M. S. Suraj, R. Aggarwal, K. Shalini, and M. C. Asique, New Astron. 63, 15 (2018).

    Article  ADS  Google Scholar 

  43. X. Wang, N. Wu, L. Zhou, and B. Xu, arXiv:1803.06614 [astro-ph.EP] (2018).

  44. S. V. Ershkov and D. Leshchenko, Astrophys. Space Sci. 364, 207 (2019).

    Article  ADS  Google Scholar 

  45. J. Singh and S. Haruna, Sci. Rep. 10, 18861 (2020).

    Article  ADS  Google Scholar 

  46. T. O. Amuda, J. Singh, and L. Oni, Indian J. Phys. 95, 1305 (2021).

    Article  ADS  Google Scholar 

  47. M. S. Suraj, R. Aggarwal, V. K. Aggarwal, and M. C. Asique, New Astron. 89, 101630 (2021).

  48. T. O. Amuda and J. Singh, Earth, Moon, Planets 126, 1 (2022).

    Article  ADS  Google Scholar 

  49. J. Singh and T. K. Richard, New Astron. 91, 101704 (2022).

  50. J. Singh and S. M. Ahmad, Sci. Rep. 12, 2819 (2022).

    Article  ADS  Google Scholar 

  51. R. Arohan and R. K. Sharma, Indian J. Sci. Tech. 13, 1630 (2020).

    Article  Google Scholar 

  52. A. A. Jency, R. K. Sharma, and G. Singh, Indian J. Sci. Tech. 13, 4168 (2020).

    Article  Google Scholar 

Download references

Funding

This study was funded by Science and Engineering Research Board, Department of Science and Technology, India, under the scheme MATRICS (MTR/2018/000442). The author, Rajiv Aggarwal, has received a research grant by Department of Science and Technology, India.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dinesh Kumar, Ram Krishan Sharma, Rajiv Aggarwal, Shipra Chauhan or Arpana Sharma.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Sharma, R.K., Aggarwal, R. et al. A Note on Modified Restricted Three-Body Problem. Astron. Rep. 66, 710–724 (2022). https://doi.org/10.1134/S1063772922090049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922090049

Keywords:

Navigation