Skip to main content

Mass Indices of Meteoric Bodies: II. Evolution of Meteoroid Streams


The calculation results of the evolution of meteoroid streams obtained using the model described by Shustov and Zolotarev (2022) are presented. The model was implemented using the REBOUND software package. The evolution of model meteoroid streams associated with comets 96P/Machholz and 2P/Encke was considered. It was shown that the distribution of mass spectra is formed in the meteoroid stream: the mass index at the center of the stream \(s < 2\), while at the edge of the stream \(s\) may exceed 2. There are two causes of such changes in the structure of the meteoroid stream: (1) the initial velocity of particle ejection from the comet nucleus strongly depends on the particle size, and small particles move away from the nucleus faster; (2) small particles are more exposed to the action of radiation forces and therefore scatter in space faster than large particles, so the mass index at the center of the stream decreases. These results are consistent with the results obtained by other authors from observations of meteor streams, in particular, the Arietids stream.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.





  1. B. M. Shustov and R. V. Zolotarev, Astron. Rep. (2021, in press).

  2. B. M. Shustov, INASAN Sci. Rep. 4, 356 (2019).

    Google Scholar 

  3. A. V. Tutukov and B. M. Shustov, Astrophysics 63, 552 (2020).

    Article  Google Scholar 

  4. I. P. Williams and G. O. Ryabova, Mon. Not. R. Astron. Soc. 415, 3914 (2011).

    Article  ADS  Google Scholar 

  5. G. O. Ryabova, Solar Syst. Res. 47, 219 (2013).

    Article  ADS  Google Scholar 

  6. J. Vaubaillon, L. Neslušan, A. Sekhar, R. Rudawska, and G. O. Ryabova, in Meteoroids: Sources of Meteors on Earth and Beyond, Ed. by G. O. Ryabova, D. J. Asher, and M. D. Campbell-Brown (Cambridge Univ. Press, Cambridge, UK, 2019), p. 161.

    Google Scholar 

  7. L. Neslušan, Z. Kaňuchová, and D. Tomko, Astron. Astrophys. 551, A87 (2013).

    Article  ADS  Google Scholar 

  8. G. O. Ryabova, Mathematical Modelling of Meteoroid Streams (Springer, Cham, 2020).

    Book  Google Scholar 

  9. P. A. Wiegert, Earth Moon Planets 102, 15 (2008).

    Article  ADS  Google Scholar 

  10. D. Šegon, J. Vaubaillon, P. S. Gural, D. Vida, Ž. Andreić, K. Korlević, and I. Skokić, Astron. Astrophys. 598, A15 (2017); arXiv: 1611.02297 [astro-ph.EP].

    Article  ADS  Google Scholar 

  11. G. E. Sambarov, T. Y. Galushina, and O. M. Syusina, Planet. Space Sci. 185, 104885 (2020); arXiv: 2008.03823 [astro-ph.EP].

  12. J. Vaubaillon, F. Colas, and L. Jorda, Astron. Astrophys. 439, 751 (2005).

    Article  ADS  Google Scholar 

  13. J. Vaubaillon, F. Colas, and L. Jorda, Astron. Astrophys. 439, 761 (2005).

    Article  ADS  Google Scholar 

  14. D. L. Clark and P. A. Wiegert, in The Meteoroids 2013, Proceedings of the Astronomical Conference, Poznan, Poland, Aug. 26–30, 2013, Ed. by T. J. Jopek, F. J. M. Rietmeijer, J. Watanabe, and I. P. Williams (A. M. University Press, Poznan, 2014), p. 275.

  15. G. O. Ryabova, in Asteroids, Comets, Meteors, Proceedings of the IAU Symposium, Búzios, Rio de Janeiro, Brasil, Aug. 7–12, 2005, Ed. by D. Lazzaro, S. Ferraz-Mello, and J. A. Fernández, IAU Symp. Proc. 229, 229 (2006).

  16. P. Jenniskens, Meteor Showers and Their Parent Comets (Cambridge Univ. Press, Cambridge, 2008).

    Google Scholar 

  17. G. O. Ryabova, A. V. Pleshanova, and V. S. Konstantinov, Solar Syst. Res. 42, 335 (2008).

    Article  ADS  Google Scholar 

  18. A. Abedin, P. Wiegert, P. Pokorný, and P. Brown, Icarus 281, 417 (2017).

    Article  ADS  Google Scholar 

  19. P. Jenniskens, H. Duckworth, and B. Grigsby, WGN, J. Int. Meteor Org. 40 (3), 98 (2012).

    ADS  Google Scholar 

  20. J. A. Burns, P. L. Lamy, and S. Soter, Icarus 40, 1 (1979).

    Article  ADS  Google Scholar 

  21. H. Rein and S. F. Liu, Astron. Astrophys. 537, A128 (2012); arXiv: 1110.4876 [astro-ph.EP].

    Article  ADS  Google Scholar 

  22. H. Rein, D. M. Hernandez, D. Tamayo, G. Brown, et al., Mon. Not. R. Astron. Soc. 485, 5490 (2019); arXiv: 1903.04972 [astro-ph.EP].

    Article  ADS  Google Scholar 

  23. J. E. Chambers, Mon. Not. R. Astron. Soc. 304, 793 (1999).

    Article  ADS  Google Scholar 

  24. H. Rein and D. Tamayo, Mon. Not. R. Astron. Soc. 452, 376 (2015); arXiv: 1506.01084 [astro-ph.EP].

    Article  ADS  Google Scholar 

  25. H. Rein and D. S. Spiegel, Mon. Not. R. Astron. Soc. 446, 1424 (2015); arXiv: 1409.4779 [astro-ph.EP].

    Article  ADS  Google Scholar 

  26. R. C. Blaauw, M. D. Campbell-Brown, and R. J. We-ryk, Mon. Not. R. Astron. Soc. 414, 3322 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to R. V. Zolotarev or B. M. Shustov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zolotarev, R.V., Shustov, B.M. Mass Indices of Meteoric Bodies: II. Evolution of Meteoroid Streams. Astron. Rep. 66, 255–268 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • meteor
  • meteoroid
  • mass index
  • comet