Skip to main content
Log in

Numerical Model to Study Proton Polar Aurorae on Mars

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract—

We present a hybrid model and a magnetohydrodynamic (MHD) one for the solar wind plasma flow around Mars, which serve to calculate the flux of protons of the solar wind and the boundary of the induced magnetosphere. These parameters are used as input data for the kinetic Monte-Carlo model of the impact of a proton flux of the undisturbed solar wind on the daytime atmosphere of Mars. This model is intended to be used to determine the energy fluxes and the energy spectra of hydrogen atoms penetrating into the daytime upper atmosphere through the induced magnetosphere boundary. The obtained characteristics allow us to estimate the parameters of proton auroral phenomena, which were recently discovered in the upper atmosphere of Mars. Based on these characteristics, proton aurorae, which were observed with the Imaging UV Spectrograph (IUVIS) onboard the Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft, can be calculated. The comparison of the results of these calculations with the observed characteristics opens up a unique opportunity to specify more accurately the properties of the atmosphere and the magnetic field of Mars, as well as enlarges a range of techniques used to determine the solar wind parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. F. Nagy, D. Winterhalter, K. Sauer, T. E. Cravens, et al., Space Sci. Rev. 111, 33 (2004).

    Article  ADS  Google Scholar 

  2. E. Dubinin, M. Fraenz, J. Woch, E. Roussos, et al., Space Sci. Rev. 126, 209 (2006).

    Article  ADS  Google Scholar 

  3. M. S. Chaffin, J. Y. Chaufray, D. Deighan, N. M. Schneider, et al., J. Geophys. Res. Planets 123, 2192 (2018).

    Article  ADS  Google Scholar 

  4. Y. Futaana, J.-Y. Chaufray, H. T. Smith, P. Garnier, et al., Space Sci. Rev. 162, 213 (2011).

    Article  ADS  Google Scholar 

  5. A. Hughes, M. Chaffin, E. Mierkiewicz, J. Deighan, S. Jain, N. Schneider, M. Mayyasi, and B. Jakosky, J. Geophys. Res. Space Phys. 124, 10.533 (2019).

  6. J. Deighan, S. K. Jain, M. S. Chaffin, X. Fang, et al., Nat. Astron. 2, 802 (2018).

    Article  ADS  Google Scholar 

  7. V. I. Shematovich, D. V. Bisikalo, J.-C. Gerard, and B. Hubert, Astron. Rep. 63, 835 (2019).

    Article  ADS  Google Scholar 

  8. V. I. Shematovich, D. V. Bisikalo, and A. G. Zhilkin, Astron. Rep. 65, 203 (2021).

    Article  ADS  Google Scholar 

  9. E. J. Weber and L. Davis, Jr., Astrophys. J. 148, 217 (1967).

    Article  ADS  Google Scholar 

  10. L. D. Landau, E. M. Lifshits, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Fizmatlit, Moscow, 2003; Pergamon, New York, 1984).

  11. A. G. Zhilkin, A. V. Sobolev, D. V. Bisikalo, and M. M. Gabdeev, Astron. Rep. 63, 751 (2019).

    Article  ADS  Google Scholar 

  12. D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  13. D. V. Bisikalo, A. A. Boyarchuk, V. M. Chechetkin, O. A. Kuznetsov, and D. Molteni, Astron. Rep. 43, 797 (1999).

    ADS  Google Scholar 

  14. J. S. Halekas, R. J. Lillis, D. L. Mitchell, T. E. Cravens, et al., Geophys. Res. Lett. 42, 8901 (2015).

    Article  ADS  Google Scholar 

  15. C. Mazelle, D. Winterhalterm, K. Sauer, J. G. Trotignon, et al., Space Sci. Rev. 111, 115 (2004).

    Article  ADS  Google Scholar 

  16. J. W. Chamberlain, Planet. Space Sci. 11, 901 (1963).

    Article  ADS  Google Scholar 

  17. A. Rahmati, T. E. Cravens, A. F. Nagy, J. L. Fox, et al., Geophys. Res. Lett. 41, 4812 (2014).

    Article  ADS  Google Scholar 

  18. A. Bößwetter, T. Bagdonat, U. Motschmann, and K. Sauer, Ann. Geophys. 22, 4363 (2004).

    Article  ADS  Google Scholar 

  19. B. N. Gershman, Ionospheric Plasma Dynamics (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  20. A. P. Matthews, J. Comput. Phys. 112, 102 (1994).

    Article  ADS  Google Scholar 

  21. T. Bagdonat and U. Motschmann, J. Comput. Phys. 183, 470 (2002).

    Article  ADS  Google Scholar 

  22. H. Shimazu, Earth, Planets Space 51, 383 (1999).

    Article  ADS  Google Scholar 

  23. H. Shimazu, J. Geophys. Res. 106 (A5), 8333 (2001).

    Article  ADS  Google Scholar 

  24. E. Kallio and P. Janhunen, J. Geophys. Res. 106 (A4), 5617 (2001).

    Article  ADS  Google Scholar 

  25. E. Kallio and P. Janhunen, J. Geophys. Res. 107 (A3), 1035 (2002).

    Article  Google Scholar 

  26. E. Kallio, K. Liu, R. Jarvinen, V. Pohjola, and P. Janhunen, Icarus 206, 152 (2010).

    Article  ADS  Google Scholar 

  27. X.-D. Wang, M. Alho, R. Jarvinen, E. Kallio, S. Barabash, and Y. Futaana, J. Geophys. Res. Space Phys. 121, 190 (2016).

    Article  ADS  Google Scholar 

  28. X.-D. Wang, M. Alho, R. Jarvinen, E. Kallio, S. Barabash, and Y. Futaana, J. Geophys. Res. Space Phys. 123, 8730 (2018).

    Article  ADS  Google Scholar 

  29. J. L. Fox and A. B. Hac, Icarus 204, 527 (2009).

    Article  ADS  Google Scholar 

  30. Y. Ma, A. F. Nagy, I. V. Sokolov, and K. C. Hansen, J. Geophys. Res. 109 (A7), A07211 (2004).

  31. Y. J. Ma, X. Fang, A. F. Nagy, C. T. Russell, and G. Toth, J. Geophys. Res. Space Phys. 119, 1272 (2014).

    Article  ADS  Google Scholar 

  32. C. Dong, Y. Ma, S. W. Bougher, G. Toth, et al., Geophys. Res. Lett. 42, 9103 (2015).

    Article  ADS  Google Scholar 

  33. C. Dong, S. W. Bougher, Y. Ma, G. Toth, et al., J. Geophys. Res. Space Phys. 120, 7857 (2015).

    Article  ADS  Google Scholar 

  34. Y. J. Ma, C. T. Russell, X. Fang, Y. Dong, et al., Geophys. Res. Lett. 42, 9113 (2015).

    Article  ADS  Google Scholar 

  35. J.-C. Gerard, B. Hubert, B. Ritter, V. I. Shematovich, and D. V. Bisikalo, Icarus 321, 266 (2019).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The computing facilities of the Joint Supercomputer Center of the Russian Academy of Sciences were used for this work.

Funding

The study was supported by the Russian Scientific Foundation (project no. 19-12-00370).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Zhilkin.

Additional information

Translated by E. Petrova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhilkin, A.G., Bisikalo, D.V. & Shematovich, V.I. Numerical Model to Study Proton Polar Aurorae on Mars. Astron. Rep. 66, 245–254 (2022). https://doi.org/10.1134/S1063772922030076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922030076

Keywords:

Navigation