Skip to main content

Study of the Magnetic Properties of Sunspot Umbrae

Abstract

The paper presents the results of the study of sunspots, obtained by the authors and other researchers in recent years. The results regarding the atmosphere above sunspot umbrae, based on the observational data in the spectral lines of the upper chromosphere and lower corona, are discussed. It is shown that individual parameters of the profile of these lines differ in leading and trailing sunspots. A hypothesis about the relationship between the parameters of the profiles of these spectral lines and the parameters of the magnetic field in sunspot umbrae is stated and tested. A comparative analysis of the magnetic properties of the umbrae of leading and trailing sunspots in active regions (ARs) without explosive processes (EPs, id est, formation of coronal mass ejection with solar flare) is carried out. For the analysis, only pairs of magnetically coupled (connected by magnetic field lines) leading and trailing sunspots were selected. It is shown that the values of a number of magnetic field parameters in sunspot umbrae and the character of the relationship between them depend on the type of the sunspots. In particular, in the umbrae of leading and trailing sunspots of close areas, the maximum and average magnitudes of the magnetic induction are different. The dependences of the minimum angle of inclination of the field lines to the radial direction from the center of the Sun and the average inclination angle of the field lines on the umbra areas of leading and trailing sunspots are also different. For magnetically coupled leading and trailing sunspots, it is shown that the distances from the center of the umbra of each type of sunspots to the main polarity separation line of the photospheric field in ARs are different. The paper also discusses the time variation of various magnetic field parameters of the sunspot umbra separately for single and magnetically coupled sunspots, as well as sunspots of magnetically coupled ARs, which we defined as magnetic activity complexes (MACs). The evolution of the magnetic characteristics of sunspots, including sunspots in the MACs, during a radical rearrangement of the magnetic configuration is studied. The influence of EPs on the characteristics of the magnetic field in sunspots is revealed. One of the objectives of this work was to reveal the difference between the properties of sunspots in ARs without EPs and in ARs with various activities, e.g., with solar flares and the formation of coronal mass ejections.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.
Fig. 40.
Fig. 41.
Fig. 42.
Fig. 43.
Fig. 44.
Fig. 45.

Notes

  1. http://jsoc.stanford.edu/ajax/exportdata.html

REFERENCES

  1. V. M. Efimenko and V. G. Lozitsky, Adv. Space Res. 61, 2820 (2018).

    ADS  Google Scholar 

  2. J. M. Borrero and K. Ichimoto, Living Rev. Solar Phys. 8, 4 (2011).

    ADS  Google Scholar 

  3. C. Kuckein, R. Centeno, V. Martínez Pillet, R. Casini, R. Manso Sainz, and T. Shimizu, Astron. Astrophys. 501, 1113 (2009).

    ADS  Google Scholar 

  4. V. G. Lozitsky, Adv. Space Res. 59, 1416 (2017).

    ADS  Google Scholar 

  5. M. von Noort, A. Lagg, S. K. Tiwari, and S. K. Solanki, Astron. Astrophys. 557, A24 (2013).

    ADS  Google Scholar 

  6. P. Maltby, in Sunspots: Theory and Observations, Proceedings of the NATO Advanced Research Workshop on the Theory of Sunspots, Cambridge, United Kingdom, 1992, Ed. J. H. Thomas and N. O. Weiss, p. 103.

  7. J. Joshi, PhD Thesis (Tech. Univ., Braunschweig, 2014).

  8. V. N. Obridko, Sunspots and Activity Complexes (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  9. Iu. S. Zagainova, V. G. Fainshtein, and V. N. Obridko, arXiv: 1511.07229 (2015).

  10. I. Zhivanovich, A. A. Solov’ev, V. I. Efremov, and N. O. Miller, Geomagn. Aeron. 60, 865 (2020).

    ADS  Google Scholar 

  11. V. I. Efremov, A. A. Solov’ev, L. D. Parfinenko, and I. Zhivanovich, Geomagn. Aeron. 60, 1023 (2020).

    ADS  Google Scholar 

  12. O. A. Korolkova and V. I. Efremov, Geomagn. Aeron. 59, 827 (2020).

    ADS  Google Scholar 

  13. V. N. Obridko and Yu. A. Nagovitsyn, Solar Activity, Cyclicity and Forecast Methods (VVM, Moscow, 2017) [in Russian].

    Google Scholar 

  14. R. J. Bray and R. E. Loughead, Sunspots (Wiley, New York, 1964).

    Google Scholar 

  15. Yu. T. Tsap, V. A. Perebeynos, A. V. Borisenko, N. I. Lozitska, N. I. Shtertser, G. G. Motorina, and A. I. Kuleshova, Astron. Astrophys. Trans. 31, 363 (2019).

    ADS  Google Scholar 

  16. G. E. Hale, F. Ellerman, S. B. Nicholson, and A. H. Joy, Astrophys. J. 49, 153 (1919).

    ADS  Google Scholar 

  17. F. T. Watson, M. J. Penn, and W. Livingston, Astrophys. J. 787, 2 (2014).

    Google Scholar 

  18. A. G. Tlatov and A. A. Pevtsov, Solar Phys. 289, 1143 (2014).

    ADS  Google Scholar 

  19. C. Kiess, R. Rezaei, and W. Schmidt, Astron. Astrophys. 565, A52 (2014).

    ADS  Google Scholar 

  20. I.-H. Cho, K.-S. Cho, S.-C. Bong, Y.-J. Moon, et al., Astrophys. J. Lett. 837, L11 (2017).

    ADS  Google Scholar 

  21. M. Sobotka, Contrib. Astron. Observ. Skalnate Pleso 15, 315 (1986).

    ADS  Google Scholar 

  22. J. Jurčák, R. Rezaei, N. Bello González, R. Schlichenmaier, and J. Vomlel, Astron. Astrophys. 611, L4 (2018).

    ADS  Google Scholar 

  23. M. Schmassmann, R. Schlichenmaier, and N. Bello González, Astron. Astrophys. 620, A104 (2018).

    ADS  Google Scholar 

  24. B. Löptien, A. Lagg, M. van Noort, and S. K. Solanki, Astron. Astrophys. 639, A106 (2020).

    ADS  Google Scholar 

  25. J. Houtgast and A. van Sluiters, Bull. Astron. Inst. Netherlands 10 (388), 325 (1948).

    ADS  Google Scholar 

  26. C. L. Jin, Z. Q. Qu, C. L. Xu, X. Y. Zhang, and M. G. Sun, Astrophys. Space Sci. 306, 23 (2006).

    ADS  Google Scholar 

  27. P. A. Gilman and R. Howard, Astrophys. J. 295, 233 (2011).

    ADS  Google Scholar 

  28. Yu. S. Zagainova, Astron. Rep. 55, 159 (2011).

    ADS  Google Scholar 

  29. Yu. S. Zagainova, V. G. Fainshtein, G. V. Rudenko, and V. N. Obridko, Astron. Rep. 59, 156 (2015).

    ADS  Google Scholar 

  30. Yu. S. Zagainova, V. G. Fainshtein, and V. N. Obridko, Geomagn. Aeron. 55, 13 (2015).

    ADS  Google Scholar 

  31. Yu. S. Zagainova, V. G. Fainshtein, V. N. Obridko, and G. V. Rudenko, Astron. Rep. 61, 533 (2017).

    ADS  Google Scholar 

  32. M. J. Penn and W. Livingston. Astrophys. J. 649, L45 (2006).

    ADS  Google Scholar 

  33. A. Pevtsov, Y. A. Nagovitsyn, A. G. Tlatov, and A. L Rybak. Astrophys. J. Lett. 742, L36 (2011).

    ADS  Google Scholar 

  34. A. A. Pevtsov, L. Bertello, A. G. Tlatov, A. Kilcik, Y. A. Nagovitsyn, and E. W. Cliver, Solar Phys. 289, 593 (2013).

    ADS  Google Scholar 

  35. N. I. Lozitska, V. G. Lozitsky, O. A. Andryeyeva, Z. S. Akhtemov, V. M. Malashchuk, V. A. Perebeynos, N. N. Stepanyan, and N. I. Shtertser, Adv. Space Res. 55, 897 (2015).

    ADS  Google Scholar 

  36. A. B. Severnyi, Izv. KrAO 36, 22 (1967).

    Google Scholar 

  37. S. I. Gopasyuk, V. A. Kotov, A. B. Severny, and T. T. Tsap, Solar Phys. 31, 307 (1973).

    ADS  Google Scholar 

  38. J. O. Stenflo, Solar Phys. 32, 41 (1973).

    ADS  Google Scholar 

  39. V. G. Lozitsky, Adv. Space Res. 55, 958 (2015).

    ADS  Google Scholar 

  40. I. Zhivanovich, A. A. Solov’ev, V. V. Smirnova, A. Riehokainen, and V. G. Nagnibeda, Astrophys. Space Sci. 361, 102 (2016).

    ADS  Google Scholar 

  41. S. K. Tiwari, M. van Noort, S. K. Solanki, and A. Lagg, Astron. Astrophys. 583, A119 (2015).

    ADS  Google Scholar 

  42. H. Wang, C. Liu Y. Deng, and H. Zhang, Astrophys. J. 627, 1031 (2005).

    ADS  Google Scholar 

  43. N. Deng, C. Liu, G. Yang, H. Wang, and C. Denker, Astrophys. J. 623, 1195 (2005).

    ADS  Google Scholar 

  44. C. Liu, N. Deng, Y. Liu, D. Falconer, P. R. Goode, C. Denker, and H. Wang, Astrophys. J. 622, 722 (2005).

    ADS  Google Scholar 

  45. J. Wang, M. Zhao, and G. Zhou, Astrophys. J. 690, 862 (2009).

    ADS  Google Scholar 

  46. Y. X. Li, J. Jing, C. G. Tan, and H. Wang, Sci. China G 52, 1702 (2009).

    Google Scholar 

  47. B. Ravindra, Y. Keiji, and D. Sergio, Astrophys. J. 743, 33 (2011).

    ADS  Google Scholar 

  48. G. J. D. Petrie, Solar. Phys. 287, 415 (2013).

    ADS  Google Scholar 

  49. A. B. Griñón-Marín, A. Pastor Yabar, H. Socas-Navarro, and R. Centeno, Astron. Astrophys. 635, A64 (2020).

    ADS  Google Scholar 

  50. Z. Xu, Y. Jiang, J.Yang, J. Hong, and H. Li, Astrophys. J. Lett. 840, L21 (2017).

    ADS  Google Scholar 

  51. C. Liu, Y. Xu, W. Cao, N. Deng, et al., Nat. Commun. 7, 13104 (2016).

    ADS  Google Scholar 

  52. A. I. Podgorny, I. M. Podgorny, and N. S. Meshalkina, Astron. Rep. 59, 795 (2015).

    ADS  Google Scholar 

  53. Y. Fan, G. H. Fisher, and E. E. de Luca, Astrophys. J. 405, 390 (1993).

    ADS  Google Scholar 

  54. Y. Fan, G. H. Fisher, and A. N. McClymont, Astrophys. J. 436, 907 (1994).

    ADS  Google Scholar 

  55. Y. Fan, N. Featherstone, and F. Fang, arXiv: 1305.6370 (2013).

  56. P. Caligari, M. Schussler, and F. Moreno-Insertis, Astrophys. J. 502, 481 (1998).

    ADS  Google Scholar 

  57. P. Caligari, F. Moreno-Insertis, and M. Schussler, Astrophys. J. 441, 886 (1995).

    ADS  Google Scholar 

  58. Y. Fan, Astrophys. J. 676, 680 (2008).

    ADS  Google Scholar 

  59. M. A. Weber, Y. Fan, and M. S. Miesch, Astrophys. J. 741, 11 (2011).

    ADS  Google Scholar 

  60. A. V. Getling, R. Ishikawa, and A. A. Buchnev, Solar Phys. 291, 37 (2016).

    Google Scholar 

  61. A. V. Getling and A. A. Buchnev, Astrophys. J. 871, 224 (2019).

    ADS  Google Scholar 

  62. V. Smirnova, V. I. Efremov, L. D. Parfinenko, A. Riehokainen, and A. A. Solov’ev, Astron. Astrophys. 554, A121 (2013).

    ADS  Google Scholar 

  63. A. A. Solov’ev and E. Kirichek, Astrophys. Space Sci. 352, 23 (2014).

    ADS  Google Scholar 

  64. V. M. Grigor’ev, L. V. Ermakova, and A. I. Khlystova, Soln.-Zemn. Fiz., No. 6, 3 (2020).

  65. A. G. Kosovichev, Space Sci. Rev. 144, 175 (2009).

    ADS  Google Scholar 

  66. A. G. Kosovichev, Solar Phys. 279, 323 (2012).

    ADS  Google Scholar 

  67. M. Rempel and M. C. M. Cheung, Astrophys. J. 785, 90 (2014).

    ADS  Google Scholar 

  68. S. A. Chuprakov, G. I. Kushtal, P. G. Papushev, V. I. Skomorovsky, and Yu. S. Zagainova, Proc. IAU Symp. 223, 183 (2004).

  69. G. N. Domyshev, G. I. Kushtal’, V. P. Sadokhin, and V. I. Skomorovskii, Soln.-Zemn. Fiz., No. 6, 156 (2004).

  70. Yu. S. Zagainova, Cand. Sci. (Phys. Math.) Dissertation (2015).

  71. J. Chae, H. S. Yun, T. Sakurai, and K. Ichimoto, Solar Phys. 183, 229 (1998).

    ADS  Google Scholar 

  72. E. Boukouvala and A. H. Lrttington, Astron. Astrophys. 309, 807 (2003).

    ADS  Google Scholar 

  73. S. N. Kuznetsov, K. Kudela, S. P. Ryumin, and Y. V. Gotselyuk, Adv. Space Res. 30, 1857 (2002).

    ADS  Google Scholar 

  74. J.-P. Delaboudiniière, G. E. Artzner, J. Brunaud, et al., Solar Phys. 162, 291 (1995).

    ADS  Google Scholar 

  75. J. R. Lemen, A. M. Title, D. J. Akin, et al., Solar Phys. 275, 7 (2012).

    ADS  Google Scholar 

  76. J. Wolfson, M. Bruner, B. Jurcevich, et al., Bull. AAS 29, 887 (1997).

    ADS  Google Scholar 

  77. I. Zayer, M. Morrison, T. Pope, et al., ASP Conf. Ser. 76, 456 (1995).

  78. J. Schou, P. H. Scherrer, R. I. Bush, et al., Solar Phys. 275, 229 (2012).

    ADS  Google Scholar 

  79. R. G. Giovanelli and D. Hall, Solar Phys. 52, 211 (1977).

    ADS  Google Scholar 

  80. G. V. Rudenko and S. A. Anfinogentov, Solar Phys. 289, 1499 (2014).

    ADS  Google Scholar 

  81. N. R. Sheeley, Jr., J. H. Walters, Y.-M. Wang, and R. A. Howard, J. Geophys. Res. 104, 24739 (1999).

    ADS  Google Scholar 

  82. M. G. Bobra, X. Sun, J. T. Hoeksema, M. Turmon, Y. Liu, K. Hayashi, G. Barnes, and K. D. Leka, Solar Phys. 289, 3549 (2014).

    ADS  Google Scholar 

  83. G. V. Rudenko, Solar Phys. 198, 5 (2001).

    ADS  Google Scholar 

  84. A. G. Tlatov, K. A. Tlatova, V. V. Vasil’eva, A. A. Pevtsov, and K. Mursula, Adv. Space Res. 55, 835 (2015).

    ADS  Google Scholar 

  85. L. van Driel-Gesztelyi and K. Petrovay, Solar Phys. 126, 285 (1990).

    ADS  Google Scholar 

  86. G. Cauzzi and L. van Drial-Gesztelyi, ASP Conf. Ser. 140, 105 (1998).

  87. G. V. Kuklin, Issled. Geomagn. Aeron. Fiz. Solntsa 73, 52 (1985).

    ADS  Google Scholar 

  88. Yu. S. Zagainova, V. G. Fainshtein, V. N. Obridko, and V. G. Rudenko, Geomagn. Aeron. 57, 946 (2017).

    ADS  Google Scholar 

  89. A. F. Kowalski, E. Butler, A.N. Daw, L. Fletcher, J. C. Allred, B. de Pontieu, G. S. Kerr, and G. Cauzzi, Astrophys. J. 878, 135 (2019).

    ADS  Google Scholar 

  90. T. G. Cowling, Mon. Not. R. Astron. Soc. 106, 218 (1946).

    ADS  Google Scholar 

  91. Iu. S. Zagainova, V. G. Fainshtein, V. N. Obridko, and G. V. Rudenko, Geomagn. Aeron. 56, 1015 (2016).

    ADS  Google Scholar 

  92. Yu. S. Zagainova, V. G. Fainshtein, V. N. Obridko, V. G. Rudenko, and S. A. Anfinogentov, in Proceedings of the Conference on Solar and Solar–Terrestrial Physics—2015, St. Petersburg, Pulkovo (2015), p. 145.

  93. B. P. Filippov, Eruptive Processes on the Sun (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  94. B. V. Somov, Phys. Usp. 53, 954 (2010).

    ADS  Google Scholar 

  95. Yu. S. Zagainova and V. G. Fainshtein, in Proceedings of the 24th All-Russia Annual Conference on Solar and Solar–Terrestrial Physics—2020, GAO RAN, Pulkovo (2020), p. 113.

  96. Iu. S. Zagainova, V. G. Fainshtein, V. N. Obridko, and G. V. Rudenko, Astron. Rep. 61, 533 (2017).

    ADS  Google Scholar 

  97. Iu. S. Zagainova, V. G. Fainshtein, G. V. Rudenko, and V. N. Obridko, Geomagn. Aeron. 57, 835 (2017).

    ADS  Google Scholar 

  98. A. B. Griñón-Marín, A. Pastor Yabar, H. Socas-Navarro, and R. Centeno, Astron. Astrophys. 635, A64 (2020).

    ADS  Google Scholar 

  99. Iu. S. Zagainova, V. G. Fainshtein, L. I. Gromova, and S. V. Gromov, J. Atmos. Solar–Terr. Phys. 208, 105391 (2020).

Download references

ACKNOWLEDGMENTS

We are grateful to the CORONAS-F, SOHO/EIT, SOHO/LASCO, SDO/AIA, and SDO/HMI teams for the opportunity to freely use the data of these tools.

Funding

This work was carried out within the Basic Research Program FNI II.16 and was supported by the Russian Foundation for Basic Research, grant no. 20-12-50128 and, in part, grant no. 20-02-00150.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Zagainova.

Additional information

Translated by E. Chernokozhin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zagainova, Y.S., Fainshtein, V.G., Obridko, V.N. et al. Study of the Magnetic Properties of Sunspot Umbrae. Astron. Rep. 66, 116–164 (2022). https://doi.org/10.1134/S1063772922030064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922030064

Keywords:

  • Sun
  • solar activity
  • sunspots
  • explosive processes