Skip to main content

Dynamic Model of a Non-equilibrium Chemical Composition Formation in the Shell of Single Neutron Stars

Abstract

The process of a non-equilibrium chemical composition formation during cooling due to neutrino energy loss in the shells of hot, formed neutron stars is considered. A model constructed is to explain the presence of a large quantity of nuclear energy accumulated, which can maintain the X-ray luminosity of such compact objects for a long period of time. The study of the numerically obtained final chemical composition dependence on various parameters of the medium has been carried out.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

REFERENCES

  1. E. M. Burbidge, G. R. Burbidge, W. A. Fowler, and F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).

    Article  ADS  Google Scholar 

  2. A. G. W. Cameron, Astrophys. Space Sci. 82, 123 (1982).

    Article  ADS  Google Scholar 

  3. P. A. Seeger, W. A. Fowler, and D. D. Clayton, Astrophys. J. Suppl. 11, 121 (1965).

    Article  Google Scholar 

  4. W. Hillebrandt, Space Sci. Rev. 21, 639 (1978).

    Article  ADS  Google Scholar 

  5. I. V. Panov, Phys. At. Nucl. 79, 159 (2016).

    Article  Google Scholar 

  6. I. V. Panov and H.-Th. Janka, Astron. Astrophys. 494, 829 (2009).

    Article  ADS  Google Scholar 

  7. M. J. Mayer and E. Teller, Phys. Rev. 76, 1226 (1949).

    Article  ADS  Google Scholar 

  8. I. V. Panov and A. V. Yudin, Astron. Lett. 46, 518 (2020).

    Article  ADS  Google Scholar 

  9. C. Freiburghaus, S. Rosswog, and F.-K. Thielemann, Astrophys. J. 525, 121 (1999).

  10. A. Arcones and F.-K. Thielemann, J. Phys. G 40, 013201 (2013).

  11. V. N. Kondratyev, Mon. Not. R. Astron. Soc. 480, 5380 (2018).

    Article  ADS  Google Scholar 

  12. V. N. Kondratyev, Phys. Rev. C 69, 038801 (2004).

  13. G. S. Bisnovatyi-Kogan and V. M. Chechetkin, Astrophys. Space Sci. 26, 3 (1974).

    Article  ADS  Google Scholar 

  14. A. Yu. Ignatovskiy, Astrophysics 64, 228 (2021).

    Article  ADS  Google Scholar 

  15. F. E. Clifford and R. J. Tayler, Mon. Not. R. Astron. Soc. 129, 104 (1965).

    Article  ADS  Google Scholar 

  16. V. S. Imshennik and D. K. Nadezhin, Sov. Astron. 9, 896 (1966).

    ADS  Google Scholar 

  17. G. S. Bisnovatyi-Kogan and V. M. Chechetkin, Phys. Usp. 22, 89 (1979).

    Article  ADS  Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Fizmatlit, Moscow, 2002; Pergamon, New York, 1977).

  19. V. S. Imshennik, S. S. Filippov, and A. M. Khokhlov, Sov. Astron. Lett. 7, 121 (1981).

    ADS  Google Scholar 

  20. A. G. W. Cameron, J. J. Cowan, and J. W. Truran, Astrophys. Space Sci. 91, 235 (1982).

    Article  ADS  Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics, Part 1 (Fizmatlit, Moscow, 2002; Pergamon, Oxford, 1980).

  22. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Fizmatlit, Moscow, 2016; Pergamon, Oxford, 1975).

  23. G. Baym, H. A. Bethe, and C. J. Pethick, Nucl. Phys. A 175, 225 (1971).

    Article  ADS  Google Scholar 

  24. H. A. Bethe, G. E. Brown, J. Applegate, and J. M. Lattimer, Nucl. Phys. A 324, 487 (1979).

    Article  ADS  Google Scholar 

  25. P. Möller, A. R. Mumpower, T. Kawano, and W. D. Myers, At. Data Nucl. Data Tables 109110, 1 (2016).

  26. K. Sato, Prog. Theor. Phys. 62, 957 (1979).

    Article  ADS  Google Scholar 

  27. V. M. Chechetkin, Sov. Astron. 15, 45 (1971).

    ADS  Google Scholar 

  28. G. S. Bisnovatyi-Kogan, Physical Questions in the Theory of Stellar Evolution (Nauka, Moscow, 1989) [in Russian].

    MATH  Google Scholar 

  29. G. S. Bisnovatyi-Kogan and Ya. M. Kazhdan, Sov. Astron. 10, 604 (1967).

    ADS  Google Scholar 

  30. H. P. William, A. T. Saul, T. V. William, and P. F. Brian, Numerical Recipes in Fortran 77 (Press Syndicate Univ. Cambridge, Cambridge, 1992).

    MATH  Google Scholar 

  31. D. A. Frank-Kamenetskii, Sov. J. Exp. Theor. Phys. 15, 607 (1962),

    Google Scholar 

  32. Y. B. Zeldovich and I. D. Novikov, Relativistic Astrophysics (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  33. G. S. Bisnovatyi-Kogan, V. S. Imshennik, D. K. Nadezhin, and V. M. Chechetkin, Astrophys. Space Sci. 35, 3 (1975).

    Article  ADS  Google Scholar 

  34. G. S. Bisnovatyi-Kogan and V. M. Chechetkin, Sov. Astron. 25, 320 (1981).

    ADS  Google Scholar 

  35. G. S. Bisnovatyi-Kogan and N. R. Ikhsanov, Astron. Rep. 58, 217 (2014).

    Article  ADS  Google Scholar 

  36. G. S. Bisnovatyi-Kogan and V. M. Chechetkin, Astrophys. Space Sci. 89, 447 (1983).

    Article  ADS  Google Scholar 

  37. V. N. Kondratyev, Phys. Part. Nucl. 50, 613 (2019).

    Article  Google Scholar 

  38. V. N. Kondratyev, Phys. Rev. Lett. 88, 221101 (2002).

  39. V. N. Kondratyev and Yu. V. Korovina, Phys. Part. Nucl. 49, 105 (2018).

    Article  Google Scholar 

  40. https://t2.lanl.gov/nis/data/astro/molnix96/molnix.html.

Download references

ACKNOWLEDGMENTS

The authors are grateful to I. V. Panov for providing and indicating the nuclear data source [40] used in this article.

Funding

The work was supported by the Russian Foundation for Basic Research, grant no. 20-02-00455.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Ignatovskiy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ignatovskiy, A.Y., Bisnovatyi-Kogan, G.S. Dynamic Model of a Non-equilibrium Chemical Composition Formation in the Shell of Single Neutron Stars. Astron. Rep. 66, 221–235 (2022). https://doi.org/10.1134/S1063772922030039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922030039

Keywords:

  • nuclear astrophysics
  • nuclear statistical equilibrium
  • non-equilibrium chemical composition