Skip to main content
Log in

Mass Indices of Meteoric Bodies: I. Formation Model of Meteoroid Streams

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

It is known from observations that the mass spectra of meteoric bodies (meteoroids) that cause the phenomena of sporadic meteors and bodies in meteor showers are close in differential form to dNM–s dM, while the mass index s ≈ 2 for sporadic meteors and s < 2 (1.5−1.8) for meteor showers. We have analyzed the causes of this difference. We assume that the value of the index s ≈ 2 implies the randomness of the meteoroid stream formation both as a result of the decay of comets and of collisions of asteroids and larger meteoroids. The deviation of the index from 2 is due to the influence of the further evolution of meteoroid streams. This study considers the formulation of the first part of the problem of the evolution of the mass spectrum of bodies in meteoroid streams. This part refers to the determination of the velocity field of particles of various masses escaping the comet nucleus, i.e., substantiation of the choice of input parameters of the corresponding numerical model for calculating the further evolution of the meteoroid stream. An important feature is the consideration of an ensemble of particles of various sizes in the range of sizes (masses) that allow the use of the most abundant radar data on determining the meteoroid masses for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. D. Koschny and J. Borovička, WGN, J. Int. Meteor Organiz. 45, 91 (2017).

    ADS  Google Scholar 

  2. P. Pokorný and P. G. Brown, Astron. Astrophys. 592, A150 (2016).

    Article  ADS  Google Scholar 

  3. J. Vaubaillon, F. Colas, and L. Jorda, Astron. Astrophys. 439, 751 (2005).

    Article  ADS  Google Scholar 

  4. D. W. Hughes, Astron. Astrophys. 187, 879 (1987).

    ADS  Google Scholar 

  5. D. Vida, M. Campbell-Brown, P. G. Brown, A. Egal, and M. J. Mazur, Astron. Astrophys. 635, A153 (2020).

    Article  ADS  Google Scholar 

  6. A. V. Moorhead, A. Egal, P. G. Brown, D. E. Moser, and W. J. Cooke, J. Spacecr. Rockets 56, 1531 (2019).

    Article  ADS  Google Scholar 

  7. R. C. Blaauw, M. D. Campbell-Brown, and R. J. Weryk, Mon. Not. R. Astron. Soc. 412, 2033 (2011).

    Article  ADS  Google Scholar 

  8. D. Janches, C. Brunini, and J. L. Hormaechea, Astron. J. 157, 240 (2019).

    Article  ADS  Google Scholar 

  9. P. B. Babadzhanov, in Proceedings of the 160th IAU Symposium on Asteroids, Comets, Meteors 1993, Ed. by A. Milani, M. di Martino, and A. Cellino (1994), p. 45.

  10. J. Rendtel, in Proceedings of the International Meteor Conference, 22nd IMC, Bollmannsruh, Germany, 2003, Ed. by M. Triglav-Cekada and C. Trayner (2004), p. 114.

  11. S. Molau, S. Crivello, R. Goncalves, C. Saraiva, E. Stomeo, and J. Kac, WGN, J. Int. Meteor Organiz. 45, 144 (2017).

    ADS  Google Scholar 

  12. R. C. Blaauw, M. D. Campbell-Brown, and R. J. Weryk, Mon. Not. R. Astron. Soc. 414, 3322 (2011).

    Article  ADS  Google Scholar 

  13. P. B. Babadzhanov, S. O. Isamutdinov, and R. P. Chebotarev, Solar Syst. Res. 26, 70 (1992).

    ADS  Google Scholar 

  14. Z. Ceplecha, J. Borovička, W. G. Elford, D. O. Revelle, R. L. Hawkes, V. Porubčan, and M. Šimek, Space Sci. Rev. 84, 327 (1998).

    Article  ADS  Google Scholar 

  15. P. Jenniskens, Meteor Showers and their Parent Comets (Cambridge Univ. Press, Cambridge, 2008).

    Google Scholar 

  16. J. Borovička, P. Spurný, and P. Brown, arXiv: 1502.03307 [astro-ph.EP] (2015).

  17. J. Vaubaillon, F. Colas, and L. Jorda, Astron. Astrophys. 439, 761 (2005).

    Article  ADS  Google Scholar 

  18. G. O. Ryabova, Solar Syst. Res. 47, 219 (2013).

    Article  ADS  Google Scholar 

  19. J. Vaubaillon, L. Neslušan, A. Sekhar, R. Rudawska, and G. O. Ryabova, in Meteoroids: Sources of Meteors on Earth and Beyond (Cambridge Univ. Press, Cambridge, UK, 2019), p. 161.

    Google Scholar 

  20. B. M. Shustov and A. V. Tutukov, Astron. Rep. 62, 724 (2018).

    Article  ADS  Google Scholar 

  21. A. V. Tutukov and B. M. Shustov, Astrophysics 63, 552 (2020).

    Article  Google Scholar 

  22. B. M. Shustov, INASAN Sci. Rep. 4, 356 (2019).

    Google Scholar 

  23. G. Drolshagen, D. Koschny, S. Drolshagen, J. Kretschmer, and B. Poppe, Planet. Space Sci. 143, 21 (2017).

    Article  ADS  Google Scholar 

  24. R. Marschall, J. Markkanen, S.-B. Gerig, O. Pinzón-Rodriguez, N. Thomas, and J.-S. Wu, Front. Phys. 8, 227 (2020).

    Article  Google Scholar 

  25. M. Fulle, F. Marzari, V. della Corte, S. Fornasier, H. Sierks, A. Rotundi, C. Barbieri, P. L. Lamy, R. Rodrigo, D. Koschny, et al., Astrophys. J. 821, 19 (2016).

    Article  ADS  Google Scholar 

  26. F. L. Whipple, Astrophys. J. 113, 464 (1951).

    Article  ADS  Google Scholar 

  27. T. I. Gombosi, A. F. Nagy, and T. E. Cravens, Rev. Geophys. 24, 667 (1986).

    Article  ADS  Google Scholar 

  28. J. F. Crifo, Astrophys. J. 445, 470 (1995).

    Article  ADS  Google Scholar 

  29. G. O. Ryabova, Mathematical Modelling of Meteoroid Streams (Springer, New York, 2020).

    Book  Google Scholar 

  30. P. L. Lamy, I. Toth, Y. R. Fernandez, and H. A. Weaver, in Comets II (Univ. Arizona Press, Tucson, 2004), p. 223.

  31. Z. Yoldi, A. Pommerol, and N. Thomas, in European Planetary Science Congress (2018), pp. EPSC2018-788.

  32. A. Evans, J. C. Zarnecki, J. A. M. McDonnell, M. F. Bode, and G. E. Taylor, Mon. Not. R. Astron. Soc. 217, 669 (1985).

    Article  ADS  Google Scholar 

  33. G. A. Shah, Bull. Astron. Soc. India 17, 114 (1989).

    ADS  Google Scholar 

  34. E. Grün, A. Bar-Nun, J. Benkho, A. Bischo, et al., in Comets in the Post-Halley Era, Ed. by R. L.Newburn, Jr., M. Neugebauer, and J. Rahe, Vol. 167 of Astrophysics and Space Science Library (Kluwer, Dordrecht, 1991), p. 277.

    Google Scholar 

  35. J. Benkho, K. J. Seidensticker, K. Seiferlin, and T. Spohn, Planet. Space Sci. 43, 353 (1995).

    Article  ADS  Google Scholar 

  36. O. Groussin, J. M. Sunshine, L. M. Feaga, L. Jorda, et al., Icarus 222, 580 (2013).

    Article  ADS  Google Scholar 

  37. F. Tosi, F. Capaccioni, M. T. Capria, S. Mottola, et al., Nat. Astron. 3, 649 (2019).

    Article  ADS  Google Scholar 

  38. G. C. Sanzovo, A. A. de Almeida, A. Misra, R. M. Torres, D. C. Boice, and W. F. Huebner, Mon. Not. R. Astron. Soc. 326, 852 (2001).

    Article  ADS  Google Scholar 

  39. M. F. A’Hearn, R. C. Millis, D. O. Schleicher, D. J. Osip, and P. V. Birch, Icarus 118, 223 (1995).

    Article  ADS  Google Scholar 

  40. N. L. Eisner, M. M. Knight, C. Snodgrass, M. S. P. Kelley, A. Fitzsimmons, and R. Kokotanekova, Astron. J. 157, 186 (2019); arXiv: 1903.10500.

    Article  ADS  Google Scholar 

  41. Y. R. Fernández, C. M. Lisse, H. Ulrich Käufl, S. B. Peschke, H. A. Weaver, M. F. A’Hearn, P. P. Lamy, T. A. Livengood, and T. Kostiuk, Icarus 147, 145 (2000).

    Article  ADS  Google Scholar 

  42. T. Kramer, M. Läuter, M. Rubin, and K. Altwegg, Mon. Not. R. Astron. Soc. 469, S20 (2017).

    Article  ADS  Google Scholar 

  43. F. L. Whipple, Astrophys. J. 111, 375 (1950).

    Article  ADS  Google Scholar 

  44. B. J. R. Davidsson, P. J. Gutierrez, and H. Rickman, in Proceedings of the European Planetary Science Congress 2006 (2006), p. 438.

  45. N. H. Samarasinha, P. J. Gutierrez, M. J. S. Belton, T. Farnham, B. E. A. Mueller, and S. R. Chesley, in AAS/Division for Planetary Sciences Meeting Abstracts (2010), vol. 42, p. 28.34.

  46. R. Niimi, T. Kadono, A. Tsuchiyama, K. Okudaira, et al., Astrophys. J. 744, 18 (2012).

    Article  ADS  Google Scholar 

  47. S. F. Green, J. A. M. McDonnell, N. McBride, M. T. S. H. Colwell, A. J. Tuzzolino, T. E. Economou, P. Tsou, B. C. Clark, and D. E. Brownlee, J. Geophys. Res. (Planets) 109, E12S04 (2004).

  48. K. Richter, W. Curdt, and H. U. Keller, Astron. Astrophys. 250, 548 (1991).

    ADS  Google Scholar 

  49. A. D. Storrs, Earth Moon Planets 72, 99 (1996).

    Article  ADS  Google Scholar 

  50. C. Lejoly, N. H. Samarasinha, D. G. Schleicher, and L. Ojha, in AAS/Division for Planetary Sciences Meeting Abstracts (2014), vol. 46, p. 209.27.

  51. D. Jewitt and H. Matthews, Astron. J. 117, 1056 (1999).

    Article  ADS  Google Scholar 

  52. E. Kostolansky, Contrib. Astron. Observ. Skalnate Pleso 28, 22 (1998).

    ADS  Google Scholar 

  53. J. J. García-Martínez and F. Ortega-Gutiérrez, Meteorit. Planet. Sci. Suppl. 42, 5327 (2007).

    Google Scholar 

  54. M. Sokolova, M. Sergienko, Y. Nefedyev, A. Andreev, and L. Nefediev, Adv. Space Res. 62, 2355 (2018).

    Article  ADS  Google Scholar 

  55. J. Madiedo and J. Trigo-Rodrgíuez, in Asteroids, Comets, Meteors 2014, Ed. by K. Muinonen, A. Penttilä, M. Granvik, A. Virkki, G. Fedorets, O. Wilkman, and T. Kohout (2014), p. 328.

    Google Scholar 

  56. J. S. Dohnanyi, J. Geophys. Res. 74, 2531 (1969).

    Article  ADS  Google Scholar 

  57. J. Deller, Ph.D. Thesis (Kent Univ., UK, 2017).

  58. S. Takasawa, A. M. Nakamura, T. Kadono, M. Arakawa, et al., Astrophys. J. 733, L39 (2011).

    Article  ADS  Google Scholar 

  59. P. Ševeček, M. Brož, D. Nesvorný, B. Enke, D. Durda, K. Walsh, and D. C. Richardson, Icarus 296, 239 (2017).

    Article  ADS  Google Scholar 

  60. H. J. Melosh, in Proceedings of the Lunar and Planetary Science Conference (2020), p. 2587.

  61. A. Nakamura, K. Suguiyama, and A. Fujiwara, Icarus 100, 127 (1992).

    Article  ADS  Google Scholar 

  62. N. Onose and A. Fujiwara, in Impact Cratering: Bridging the Gap between Modeling and Observations, Ed. by R. Herrick and E. Pierazzo (2003), p. 55.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to G.O. Ryabova for helpful critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Zolotarev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shustov, B.M., Zolotarev, R.V. Mass Indices of Meteoric Bodies: I. Formation Model of Meteoroid Streams. Astron. Rep. 66, 179–189 (2022). https://doi.org/10.1134/S1063772922020093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922020093

Keywords:

Navigation