Skip to main content

Motion of Stars in Layered Inhomogeneous Elliptical Galaxies


The problem of the spatial motion of a passively gravitating body (PGB) in the gravitational field of a layered inhomogeneous elliptical galaxy (LIEG) is considered on the basis of the previously developed model. It is assumed that a LIEG consists of baryonic mass (BM) and dark matter (DM), which have different laws of density distribution. A star or the center of mass of a globular cluster is taken as the PGB, the motion of which considers the BM and DM attraction. To obtain accurate results, the BM and DM attraction potentials are not expanded in a series, but their exact expressions are taken. An analogue of the Jacobi integral is found, the region of the possible motion of the PGB is determined, and the zero-velocity surfaces are constructed. The stationary solutions (libration points) are found to be stable in the sense of Lyapunov. The results are applied to the elliptical galaxies NGC 4472 (M 49), NGC 4697, and NGC 4374 (M 84).

This is a preview of subscription content, access via your institution.

Fig. 1.


  1. S. A. Gasanov, Astron. Rep. 56, 469 (2012).

    ADS  Article  Google Scholar 

  2. S. A. Gasanov, Astron. Rep. 58, 167 (2014).

    ADS  Article  Google Scholar 

  3. S. A. Gasanov, Astron. Rep. 59, 238 (2015).

    ADS  Article  Google Scholar 

  4. S. A. Gasanov, in press.

  5. B. P. Kondrat’ev, Sov. Astron. 26, 279 (1982).

    ADS  Google Scholar 

  6. A. V. Zasov, A. S. Saburova, A. V. Khoperskov, and S. A. Khoperskov, Phys. Usp. 60, 3 (2017).

    ADS  Article  Google Scholar 

  7. G. Bertin, R. P. Saglia, and M. Stiavelli, Astrophys. J. 384, 423 (1992).

    ADS  Article  Google Scholar 

  8. M. Oguri, C. E. Rusu, and E. E. Falco, Mon. Not. R. Astron. Soc. 439, 2494 (2014).

    ADS  Article  Google Scholar 

  9. G. de Vaucouleurs, A. de Vaucouleurs, H. Corwin, R. J. Buta, G. Paturel, and P. Fouque, Third Reference Catalouge of Bright Galaxies (Springer, New York, 1991), Vols. 2, 3.

    Book  Google Scholar 

  10. G. N. Duboshin, Celestial Mechanics, Basic Problems and Methods (Nauka, Moscow, 1968) [in Russian].

    MATH  Google Scholar 

  11. H. Poincaré, Leçons sur les hypothèses cosmogoniques (Lib. Sci. A. Hermann et fils, Paris, 1911).

  12. B. P. Kondrat’ev, Potential Theory. New Methods and Problems with Solutions (Mir, Moscow, 2007) [in Russian].

  13. B. P. Kondrat’ev, Cand. Sci. (Phys. Math.) Dissertation (Mosc. Phys. Tech. Inst., Moscow, 1982).

  14. E. Hubble, Astrophys. J. 71, 231 (1930).

    ADS  Article  Google Scholar 

  15. J. F. Navarro, C. S. Frenk, and S. D. M. White, Astrophys. J. 490, 493 (1997).

    ADS  Article  Google Scholar 

  16. Yu. V. Batrakov, Byull. ITA 6, 524 (1957).

    MathSciNet  Google Scholar 

  17. V. K. Abalakin, Byull. ITA 6, 543 (1957).

    MathSciNet  Google Scholar 

  18. S. G. Zhuravlev, Sov. Astron. 18, 792 (1974).

    ADS  Google Scholar 

Download references


The author is grateful to Prof. B.P. Kondrat’ev for valuable advice and comments.

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. A. Gasanov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gasanov, S.A. Motion of Stars in Layered Inhomogeneous Elliptical Galaxies. Astron. Rep. 66, 93–101 (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • elliptical galaxy
  • baryonic mass
  • dark matter
  • analogue of the Jacobi integral
  • libration points
  • stability in the sense of Lyapunov