Skip to main content
Log in

Confusion Noise Sources in the Infrared Wavelength Range

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Within the framework of the model of the extragalactic background created earlier by the authors, the factors influencing the statistical properties of the confusion noise have been investigated. We showed the following aspects: (1) considering the large-scale structure of the Universe is an important factor; (2) gravitational lensing has no significant effect on the value of confusion noise; (3) the minimum redshift of objects that create confusion noise does not depend on the wavelength and is \({{z}_{{\min}}} \sim 0.5{-} 0.6\), the maximum redshift in the transition from 70 to 2000 µm smoothly changes from \( \sim {\kern 1pt} 4\) to \( \sim {\kern 1pt} 3\); (4) at short wavelengths (\( \simeq {\kern 1pt} 70\) µm), the main contribution to the confusion noise is made by galaxies with luminosities in the \(({{10}^{7}}{-} {{10}^{9}}){{L}_{ \odot }}\) range and at long wavelengths (650–2000 µm)—with \(L \geqslant {{10}^{{10}}}{{L}_{ \odot }}\); (5) the contribution to the confusion noise of objects with different color indices is considered; and (6) the variability of the extragalactic background created by active galactic nuclei on a time scale from 1 day to a year is noticeable at short wavelengths (70–350 μm) and manifests itself for flux densities \( \lesssim {\kern 1pt} 1\) μJy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

Notes

  1. http://millimetron.ru

  2. http://www.cosmos.esa.int/web/herschel/science-instruments

  3. Hereinafter, dex is the value in logarithmic units.

  4. Percentile (percentile, centile) is the value (in percent) that does not exceed a given random variable with a fixed probability.

REFERENCES

  1. A. Men’shchikov, Ph. André, P. Didelon, F. Motte, M. Hennemann, and N. Schneider, Astron. Astrophys. 542, A81 (2012).

    Article  ADS  Google Scholar 

  2. A. Men’shchikov, Astron. Astrophys. 560, A63 (2013).

    Article  ADS  Google Scholar 

  3. A. Men’shchikov, Astron. Astrophys. 607, A64 (2017).

    Article  ADS  Google Scholar 

  4. A. Asboth, A. Conley, J. Sayers, M. Béthermin, et al., Mon. Not. R. Astron. Soc. 462, 1989 (2016).

    Article  ADS  Google Scholar 

  5. C. D. Dowell, A. Conley, J. Glenn, V. Arumugam, et al., Astrophys. J. 780, 75 (2014).

    Article  ADS  Google Scholar 

  6. A. A. Ermash, S. V. Pilipenko, and V. N. Lukash, Astron. Lett. 46, 298 (2020).

    Article  ADS  Google Scholar 

  7. D. Liu, E. Daddi, M. Dickinson, F. Owen, et al., Astrophys. J. 853 (2), 55 (2018).

    Article  Google Scholar 

  8. C. C. Hayward, D. Narayanan, D. Kereš, P. Jonsson, P. F. Hopkins, T. J. Cox, and L. Hernquist, Mon. Not. R. Astron. Soc. 428, 2529 (2013).

    Article  ADS  Google Scholar 

  9. A. Rahmati and P. P. van der Werf, Mon. Not. R. Astron. Soc. 418, 176 (2011).

    Article  ADS  Google Scholar 

  10. H. Dole, G. Lagache, and J.-L. Puget, Astrophys. J. 585, 617 (2003).

    Article  ADS  Google Scholar 

  11. R. Chary and D. Elbaz, Astrophys. J. 556, 562 (2001).

    Article  ADS  Google Scholar 

  12. C. G. Lacey, C. M. Baugh, C. S. Frenk, A. J. Benson, et al., Mon. Not. R. Astron. Soc. 405, 2 (2010).

    ADS  Google Scholar 

  13. W. I. Cowley, C. G. Lacey, C. M. Baugh, and S. Cole, Mon. Not. R. Astron. Soc. 446, 1784 (2015).

    Article  ADS  Google Scholar 

  14. A. M. Swinbank, C. G. Lacey, I. Smail, C. M. Baugh, et al., Mon. Not. R. Astron. Soc. 391, 420 (2008).

    Article  ADS  Google Scholar 

  15. F. Fontanot and P. Monaco, Mon. Not. R. Astron. Soc. 405, 705 (2010).

    ADS  Google Scholar 

  16. M. Cousin, G. Lagache, M. Bethermin, J. Blaizot, and B. Guiderdoni, Astron. Astrophys. 575, A32 (2015).

    Article  ADS  Google Scholar 

  17. M. Cousin, G. Lagache, M. Bethermin, and B. Guiderdoni, Astron. Astrophys. 575, A33 (2015).

    Article  ADS  Google Scholar 

  18. N. S. Kardashev, Astron. Rep. 61, 310 (2017).

    Article  ADS  Google Scholar 

  19. N. S. Kardashev, I. D. Novikov, V. N. Lukash, S. V. Pilipenko, et al., Phys. Usp. 57, 1199 (2014).

    Article  ADS  Google Scholar 

  20. A. V. Smirnov, A. M. Baryshev, S. V. Pilipenko, N. V. Myshonkova, et al., in Proceedings of the Conference on Space Telescopes and Instrumentation 2012: Optical, Infrared, and Millimeter Wave, Proc. SPIE 8442, 84424C (2012).

    Article  Google Scholar 

  21. S. V. Pilipenko, M. V. Tkachev, A. A. Ermash, T. I. Larchenkova, E. V. Mikheeva, and V. N. Lukash, Astron. Lett. 43, 644 (2017).

    Article  ADS  Google Scholar 

  22. L. Silva, G. L. Granato, A. Bressan, and L. Danese, Astrophys. J. 509, 103 (1998).

    Article  ADS  Google Scholar 

  23. J. Lyu and G. H. Rieke, Astrophys. J. 841, 76 (2017).

    Article  ADS  Google Scholar 

  24. C. C. Hayward, P. S. Behroozi, R. S. Somerville, J. R. Primack, J. Moreno, and R. H. Wechsler, Mon. Not. R. Astron. Soc. 434, 2572 (2013).

    Article  ADS  Google Scholar 

  25. N. Fernandez-Conde, G. Lagache, J.-L. Puget, and H. Dole, Astron. Astrophys. 481, 885 (2008).

    Article  ADS  Google Scholar 

  26. H. T. Nguyen, B. Schulz, L. Levenson, A. Amblard, et al., Astron. Astrophys. 518, L5 (2010).

    Article  ADS  Google Scholar 

  27. G. Marsden, P. A. R. Ade, J. J. Bock, E. L. Chapin, et al., Astrophys. J. 707, 1729 (2009).

  28. R. Leiton, D. Elbaz, K. Okumura, H. S. Hwang, et al., Astron. Astrophys. 579, A93 (2015).

    Article  Google Scholar 

  29. M. Bethermin, H.-Y. Wu, G. Lagache, I. Davidzon, et al., Astron. Astrophys. 607, A89 (2017).

    Article  Google Scholar 

  30. J. Blaizot, Y. Wadadekar, B. Guiderdoni, S. T. Colombi, et al., Mon. Not. R. Astron. Soc. 360, 159 (2005).

    Article  ADS  Google Scholar 

  31. M. Demianski and A. G. Doroshkevich, Astron. Astrophys. 422, 423 (2004).

    Article  ADS  Google Scholar 

  32. S. Berta, B. Magnelli, R. Nordon, D. Lutz, et al., Astron. Astrophys. 532, A49 (2011).

    Article  Google Scholar 

  33. M. Béthermin, E. le Floc’h, O. Ilbert, A. Conley, et al., Astron. Astrophys. 542, A58 (2012).

    Article  Google Scholar 

  34. C. C. Hayward, Mon. Not. R. Astron. Soc. 432, L85 (2013).

    Article  ADS  Google Scholar 

  35. E. Vilenius, C. Kiss, M. Mommert, T. Müller, et al., Astron. Astrophys. 541, A94 (2012).

    Article  Google Scholar 

  36. E. Vilenius, J. Stansberry, T. Müller, C. Kiss, et al., Astron. Astrophys. 618, A136 (2018).

    Article  Google Scholar 

  37. S. Kozłowski, Mon. Not. R. Astron. Soc. 459, 2787 (2016).

    Article  ADS  Google Scholar 

  38. S. Kozłowski, Astrophys. J. 826, 2 (2016).

    Article  Google Scholar 

  39. C. L. MacLeod, Ž. Ivezić, C. S. Kochanek, S. Kozłowski, et al., Astrophys. J. 721, 1014 (2010).

    Article  ADS  Google Scholar 

  40. K. L. Smith, R. F. Mushotzky, P. T. Boyd, M. Malkan, S. B. Howell, and D. M. Gelino, Astrophys. J. 857, 141 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the referee for the useful comments, which made it possible to clarify some aspects of the paper.

Funding

This work was supported by the Lebedev Physical Institute of the Russian Academy of Sciences (project NNG-41-2020). The work of E.V.M. and V.N.L. were also partially supported by the Russian Scientific Foundation (project no. 19-02-00199).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Ermash, S. V. Pilipenko, E. V. Mikheeva or V. N. Lukash.

Additional information

Translated by E. Seifina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermash, A.A., Pilipenko, S.V., Mikheeva, E.V. et al. Confusion Noise Sources in the Infrared Wavelength Range. Astron. Rep. 65, 1194–1210 (2021). https://doi.org/10.1134/S1063772922010048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922010048

Keywords:

Navigation