Skip to main content

Nonequilibrium Neutronization and Large-Scale Convection in Gravitational Collapse

Abstract

Most of the energy released by the gravitational collapse of the cores of massive stars is carried away by neutrinos. The self-consistent problem of gravitational collapse is solved using 2D gas dynamics considering the spectral transport of neutrinos in the flux-limited diffusion. It is shown that large-scale convection develops in the region near the neutrinosphere and leads to an increase in the average neutrino energy up to 15–18 MeV, which is 1.5 times higher than the results of 1D calculations. This study improves a simple model of neutronization in the central opaque region, which is applicable, strictly speaking, only in the transparent region. The 2D model correctly reproduces the high chemical potential of degenerate electrons ~60 MeV at the center with a high density of matter, as in spherically symmetric calculations with exact account of the weak interaction. Since neutronization at the center is reversible due to trapped neutrinos, the instability development in the center is suppressed, and the high chemical potential of electrons at the center in the refined neutronization model does not affect the energy of outgoing neutrinos. The obtained neutrino energies are important both for explaining the supernova phenomenon and for setting up an experiment to detect neutrinos from a supernova.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. K. Nomoto and M. aki Hashimoto, Phys. Rep. 163, 13 (1988).

    ADS  Google Scholar 

  2. S. Chandrasekhar and E. A. Milne, Mon. Not. R. Astron. Soc. 91, 456 (1931).

    ADS  Google Scholar 

  3. W. A. Fowler and F. Hoyle, Astrophys. J. Suppl. 9, 201 (1964).

    Google Scholar 

  4. V. S. Imshennik and D. K. Nadezhin, Astrophys. Space Sci. Rev. 8, 1 (1989).

    ADS  Google Scholar 

  5. H. A. Bethe, Rev. Mod. Phys. 62, 801 (1990).

    ADS  Google Scholar 

  6. H.-T. Janka, K. Langanke, A. Marek, G. Martínez-Pinedo, and B. Müller, Phys. Rep. 442, 38 (2007); arXiv:astro-ph/0612072.

    ADS  Google Scholar 

  7. V. S. Imshennik and D. K. Nadezhin, Sov. Phys. JETP 36, 821 (1973).

    ADS  Google Scholar 

  8. D. K. Nadezhin, Astrophys. Space Sci. 49, 399 (1977).

    ADS  Google Scholar 

  9. S. W. Bruenn, Astrophys. J. Suppl. 58, 771 (1985).

    Google Scholar 

  10. L. Dessart, A. Burrows, E. Livne, and C. D. Ott, Astrophys. J. 673, L43 (2008); arXiv:0710.5789 [astro-ph].

    ADS  Google Scholar 

  11. F. D. Swesty and E. S. Myra, Astrophys. J. Suppl. 181, 1 (2009).

    Google Scholar 

  12. B. Müller, H.-T. Janka, and H. Dimmelmeier, Astrophys. J. Suppl. 189, 104 (2010); arXiv:1001.4841 [astro-ph.SR].

    Google Scholar 

  13. A. Mezzacappa and S. W. Bruenn, Astrophys. J. 405, 637 (1993).

    ADS  Google Scholar 

  14. A. Mezzacappa and S. W. Bruenn, Astrophys. J. 405, 669 (1993).

    ADS  Google Scholar 

  15. A. Mezzacappa and S. W. Bruenn, Astrophys. J. 410, 740 (1993).

    ADS  Google Scholar 

  16. A. Mezzacappa, M. Liebendörfer, O. E. Messer, W. R. Hix, F.-K. Thielemann, and S. W. Bruenn, Phys. Rev. Lett. 86, 1935 (2001); arXiv: astro-ph/0005366.

    ADS  Google Scholar 

  17. E. J. Lentz, A. Mezzacappa, O. E. B. Messer, M. Liebendörfer, W. R. Hix, and S. W. Bruenn, Astrophys. J. 747, 73 (2012); arXiv: 1112.3595 [astro-ph.SR].

    ADS  Google Scholar 

  18. M. Herant, W. Benz, W. R. Hix, C. L. Fryer, and S. A. Colgate, Astrophys. J. 435, 339 (1994); arXiv: astro-ph/9404024.

    ADS  Google Scholar 

  19. A. Burrows, J. Hayes, and B. A. Fryxell, Astrophys. J. 450, 830 (1995); arXiv: astro-ph/9506061.

    ADS  Google Scholar 

  20. J. W. Murphy and C. Meakin, Astrophys. J. 742, 74 (2011); arXiv: 1106.5496 [astro-ph.SR].

    ADS  Google Scholar 

  21. J. C. Dolence, A. Burrows, and W. Zhang, Astrophys. J. 800, 10 (2015); arXiv: 1403.6115 [astro-ph.SR].

    ADS  Google Scholar 

  22. S. M. Couch and C. D. Ott, Astrophys. J. 778, L7 (2013); arXiv: 1309.2632 [astro-ph.HE].

    ADS  Google Scholar 

  23. A. Wongwathanarat, E. Müller, and H.-T. Janka, Astron. Astrophys. 577, A48 (2015); arXiv: 1409.5431 [astro-ph.HE].

    ADS  Google Scholar 

  24. S. M. Couch and C. D. Ott, Astrophys. J. 799, 5 (2015); arXiv: 1408.1399 [astro-ph.HE].

    ADS  Google Scholar 

  25. D. Radice, C. D. Ott, E. Abdikamalov, S. M. Couch, R. Haas, and E. Schnetter, Astrophys. J. 820, 76 (2016); arXiv:1510.05022 [astro-ph.HE].

  26. A. Burrows and D. Vartanyan, Nature (London, U.K.) 589, 29 (2021); arXiv:2009.14157 [astro-ph.SR].

  27. V. M. Chechetkin, S. D. Ustyugov, A. A. Gorbunov, and V. I. Polezhaev, Astron. Lett. 23, 30 (1997).

    ADS  Google Scholar 

  28. I. V. Baikov, V. M. Suslin, V. M. Chechetkin, V. Bychkov, and L. Stenflo, Astron. Rep. 51, 274 (2007).

    ADS  Google Scholar 

  29. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 60, 655 (2016).

    ADS  Google Scholar 

  30. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 62, 251 (2018).

    ADS  Google Scholar 

  31. V. M. Chechetkin and A. G. Aksenov, Phys. At. Nucl. 81, 128 (2018).

    Google Scholar 

  32. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 65, 916 (2021).

    ADS  Google Scholar 

  33. V. M. Suslin, S. D. Ustyugov, V. M. Chechetkin, and G. P. Churkina, Astron. Rep. 45, 241 (2001).

    ADS  Google Scholar 

  34. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 56, 193 (2012).

    ADS  Google Scholar 

  35. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 58, 442 (2014).

    ADS  Google Scholar 

  36. I. V. Baikov and V. M. Chechetkin, Astron. Rep. 48, 229 (2004).

    ADS  Google Scholar 

  37. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 63, 900 (2019).

    ADS  Google Scholar 

  38. A. G. Aksenov, Comput. Math. Math. Phys. 55, 1752 (2015).

    MathSciNet  Google Scholar 

  39. G. Vereshchagin and A. Aksenov, Relativistic Kinetic Theory with Applications in Astrophysics and Cosmology (Cambridge Univ. Press, Cambridge, 2017).

    MATH  Google Scholar 

  40. A. G. Aksenov, Astron. Lett. 24, 482 (1998).

    ADS  Google Scholar 

  41. M. A. Skinner, J. C. Dolence, A. Burrows, D. Radice, and D. Vartanyan, Astrophys. J. Suppl. 241, 7 (2019).

    Google Scholar 

  42. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 62, 834 (2018).

    ADS  Google Scholar 

  43. G. S. Bisnovatyi-Kogan, Astrophysics 55, 387 (2012); arXiv: 1203.0997 [astro-ph.HE].

    ADS  Google Scholar 

  44. V. S. Imshennik and V. M. Chechetkin, Sov. Astron. 14, 747 (1971).

    ADS  Google Scholar 

  45. R. M. Bionta, G. Blewitt, C. B. Bratton, D. Casper, and A. Ciocio, Phys. Rev. Lett. 58, 1494 (1987).

    ADS  Google Scholar 

  46. K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, and Y. Oyama, Phys. Rev. Lett. 58, 1490 (1987).

    ADS  Google Scholar 

  47. E. N. Alekseev, L. N. Alekseeva, V. I. Volchenko, and I. V. Krivosheina, JETP Lett. 45, 589 (1987).

    ADS  Google Scholar 

  48. R. Schaeffer, Y. Declais, and S. Jullian, Nature (London, U.K.) 330, 142 (1987).

    ADS  Google Scholar 

  49. A. G. Aksenov, V. F. Tishkin, and V. M. Chechetkin, Math. Models Comput. Simul. 11, 360 (2019).

    MathSciNet  Google Scholar 

  50. A. G. Aksenov, Astron. Lett. 25, 185 (1999).

    ADS  Google Scholar 

  51. A. G. Aksenov and S. I. Blinnikov, Astron. Astrophys. 290, 674 (1994).

    ADS  Google Scholar 

  52. A. G. Aksenov, S. I. Blinnikov, and V. S. Imshennik, Astron. Rep. 39, 637 (1995).

    ADS  Google Scholar 

  53. P. Ledoux, Astrophys. J. 105, 305 (1947).

    ADS  MathSciNet  Google Scholar 

  54. G. S. Bisnovatyj-Kogan, Physical Problems of the Theory of Stellar Evolution (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  55. S. Chandrasekhar and N. R. Lebovitz, Astrophys. J. 138, 185 (1963).

    ADS  Google Scholar 

  56. H. Nagakura, A. Burrows, and D. Vartanyan, Mon. Not. R. Astron. Soc. 506, 1462 (2021).

    ADS  Google Scholar 

  57. K. Abe, P. Adrich, H. Aihara, R. Akutsu, et al., Astrophys. J. 916, 15 (2021).

    ADS  Google Scholar 

  58. H. Nagakura, Mon. Not. R. Astron. Soc. 500, 319 (2021); arXiv: 2008.10082 [astro-ph.HE].

Download references

Funding

The study was funded by the Russian Science Foundation (project no. 20-11-20165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Aksenov.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aksenov, A.G., Chechetkin, V.M. Nonequilibrium Neutronization and Large-Scale Convection in Gravitational Collapse. Astron. Rep. 66, 1–11 (2022). https://doi.org/10.1134/S1063772922010024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772922010024

Keywords:

  • neutrino
  • neutron star
  • supernova