Skip to main content
Log in

On the Formation of Spiral Arms in Dwarf Galaxies

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Spiral structure (both flocculent and Grand Design types) is very rarely observed in dwarf galaxies because the formation of spiral arms requires special conditions. In this work we analyze the sample of about 40 dS-galaxies found by scanning by eye the images of late-type galaxies with \({{m}_{B}} < {{15}^{m}}\) and \({{M}_{B}} > - {{18}^{m}}\) and photometric diameter \({{D}_{{25}}} < 12\) kpc. We found that apart from the lower average gas (HI) fraction the other properties of dS-galaxies including the presence of a bar and the isolation index do not differ much from those for dwarf Irr or Sm-types of similar luminosity and rotation velocity (or specific angular momentum).There are practically no dS-galaxies with rotation velocity below 50–60 km s–1. To check the conditions of formation of spiral structure in dwarf galaxies we carried out a series of N-body/hydrodynamic simulations of low-mass stellar-gaseous discy galaxies by varying the model kinematic parameters of discs, their initial thickness, relative masses and scale lengths of stellar and gaseous disc components, and stellar-to-dark halo masses. We came to conclusion that the gravitational mechanism of spiral structure formation is effective only for thin stellar discs, which are non-typical for dwarf galaxies, and for not too slowly rotating galaxies. Therefore, only a small fraction of dwarf galaxies with stellar/gaseous discs have spiral or ring structures. The thicker stellar disc, the more gas is required for the spiral structure to form. The reduced gas content in many dS-galaxies compared to non-spiral ones may be a result of more efficient star formation due to a higher volume gas density thank to the thinner stellar/gaseous discs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. M. G. Edmunds and J.-R. Roy, Mon. Not. R. Astron. Soc. 261, L17 (1993).

    Article  ADS  Google Scholar 

  2. A. M. Hidalgo-Gámez, Rev. Mex. Astron. Astrofis. 40, 37 (2004).

    ADS  Google Scholar 

  3. R. B. Tully, Nearby Galaxies Catalog (Cambridge Univ. Press, Cambridge, 1988).

    Google Scholar 

  4. M. A. Magaña-Serrano, A. M. Hidalgo-Gámez, I. Vega-Acevedo, and H. O. Castañeda, Rev. Mex. Astron. Astrofis. 56, 39 (2020); arXiv: 1911.05174.

  5. D. Makarov, P. Prugniel, N. Terekhova, H. Courtois, and I. Vauglin, Astron. Astrophys. 570, A13 (2014).

    Article  ADS  Google Scholar 

  6. T. Lisker, E. K. Grebel, and B. Binggeli, Astron. J. 132, 497 (2006); astro-ph/0604216.

    Article  ADS  Google Scholar 

  7. I. D. Karachentsev, D. I. Makarov, and E. I. Kaisina, Astron. J. 145, 101 (2013); arXiv: 1303.5328.

    Article  ADS  Google Scholar 

  8. J. P. Huchra, L. M. Macri, K. L. Masters, T. H. Jarrett, P. Berlind, M. Calkins, A. C. Crook, R. Cutri, P. Erdoğdu, E. Falco, et al., Astrophys. J. Suppl. Ser. 199, 26 (2012); arXiv: 1108.0669.

    Article  ADS  Google Scholar 

  9. M. Cohen, W. A. Wheaton, and S. T. Megeath, Astron. J. 126, 1090 (2003); arXiv: astro-ph/0304350.

    Article  ADS  Google Scholar 

  10. D. Makarov and I. Karachentsev, Mon. Not. R. Astron. Soc. 412, 2498 (2011); arXiv: 1011.6277.

    Article  ADS  Google Scholar 

  11. I. D. Karachentsev and D. I. Makarov, Astrophys. Bull. 63, 299 (2008); arXiv: 0812.0689.

    Article  ADS  Google Scholar 

  12. I. Karachentsev, Astron. Astrophys. Trans. 6, 1 (1995).

    Article  ADS  Google Scholar 

  13. I. D. Karachentsev, D. I. Makarov, V. E. Karachentseva, and O. V. Melnyk, Astrophys. Bull. 66, 1 (2011); arXiv: 1103.3990.

    Article  ADS  Google Scholar 

  14. M. L. McCall, O. Vaduvescu, F. Pozo Nunez, A. Barr Dominguez, R. Fingerhut, E. Unda-Sanzana, B. Li, and M. Albrecht, Astron. Astrophys. 540, A49 (2012); arXiv: 1204.1074.

    Article  ADS  Google Scholar 

  15. A. A. Ponomareva, M. A. W. Verheijen, E. Papastergis, A. Bosma, and R. F. Peletier, Mon. Not. R. Astron. Soc. 474, 4366 (2018); arXiv: 1711.09112.

  16. U. Lisenfeld, L. Verdes-Montenegro, J. Sulentic, S. Leon, D. Espada, G. Bergond, E. Garcıa, J. Sabater, J. D. Santander-Vela, and S. Verley, Astron. Astrophys. 462, 507 (2007); astro-ph/0610784.

    Article  ADS  Google Scholar 

  17. V. E. Karachentseva, V. S. Lebedev, and A. L. Shcherbanovskij, Bull. d’Inform. Centre de Donnees Stell. 30, 125 (1986).

    ADS  Google Scholar 

  18. A. V. Zasov and N. A. Zaitseva, Astron. Lett. 43, 439 (2017); arXiv: 1705.07659.

  19. I. D. Karachentsev, E. I. Kaisina, and O. G. Kashibadze Nasonova, Astron. J. 153, 6 (2017); arXiv: 1611.02574.

  20. E. V. Polyachenko and I. G. Shukhman, Astron. Lett. 46, 12 (2020).

    Article  ADS  Google Scholar 

  21. A. M. Stilp, J. J. Dalcanton, S. R. Warren, E. Skillman, J. Ott, and B. Koribalski, Astrophys. J. 765, 136 (2013); arXiv: 1301.1989.

    Article  ADS  Google Scholar 

  22. D. Tamburro, H. W. Rix, A. K. Leroy, M. M. Mac Low, F. Walter, R. C. Kennicutt, E. Brinks, and W. J. G. de Blok, Astron. J. 137, 4424 (2009); arXiv: 0903.0183.

    Article  ADS  Google Scholar 

  23. R. Ianjamasimanana, W. J. G. de Blok, F. Walter, G. H. Heald, A. Caldú-Primo, and T. H. Jarrett, Astron. J. 150, 47 (2015); arXiv: 1506.04156.

  24. F. Pinna, J. Falcón-Barroso, M. Martig, I. Martínez-Valpuesta, J. Méndez-Abreu, G. van de Ven, R. Leaman, and M. Lyubenova, Mon. Not. R. Astron. Soc. 475, 2697 (2018); arXiv: 1801.03352.

  25. K. L. Shapiro, J. Gerssen, and R. P. van der Marel, Astron. J. 126, 2707 (2003); astro-ph/0308489.

    Article  ADS  Google Scholar 

  26. A. Khoperskov and S. Khrapov, Commun. Comput. Inform. Sci. 793, 266 (2017).

    Google Scholar 

  27. S. Khrapov, S. Khoperskov, and A. Khoperskov, Vestn. Yu.-Ural. Univ., Ser.: Mat. Model. Program. 11, 124 (2018).

    Google Scholar 

  28. S. Khrapov, A. Khoperskov, and V. Korchagin, Vestn. Yu.-Ural. Univ., Ser.: Mat. Model. Program. 12, 123 (2019).

    Google Scholar 

  29. S. Khoperskov, O. Gerhard, P. Di Matteo, M. Haywood, D. Katz, S. Khrapov, A. Khoperskov, and M. Arnaboldi, Astron. Astrophys. 634, L8 (2020); arXiv: 1910.06335.

  30. A. Khoperskov, D. Bizyaev, N. Tiurina, and M. Butenko, Astron. Nachr. 331, 731 (2010); arXiv: 1007.4693.

    Article  ADS  Google Scholar 

  31. J. Wang, B. Catinella, A. Saintonge, Z. Pan, P. Serra, and L. Shao, Astrophys. J. 890, 63 (2020); arXiv: 2001.01970.

  32. A. A. Smirnov, N. Y. Sotnikova, and A. A. Koshkin, Astron. Lett. 43, 61 (2017).

    Article  ADS  Google Scholar 

  33. J. A. Sellwood and E. Athanassoula, Mon. Not. R. Astron. Soc. 221, 195 (1986).

    Article  ADS  Google Scholar 

  34. S. Khrapov, A. Khoperskov, and V. Korchagin, Galaxies 9, 29 (2021); arXiv: 2105.03198.

  35. A. Toomre, Astrophys. J. 139, 1217 (1964).

    Article  ADS  Google Scholar 

  36. A. V. Khoperskov, A. V. Zasov, and N. V. Tyurina, Astron. Rep. 47, 357 (2003); astro-ph/0306198.

    Article  ADS  Google Scholar 

  37. P. O. Vandervoort, Astrophys. J. 161, 87 (1970).

    Article  ADS  Google Scholar 

  38. A. G. Morozov, Sov. Astron. Lett. 7, 109 (1981).

    ADS  Google Scholar 

  39. V. V. Levi and A. G. Morozov, Astrophysics 30, 226 (1989).

    Article  ADS  Google Scholar 

  40. E. Griv and M. Gedalin, Mon. Not. R. Astron. Soc. 422, 600 (2012).

    Article  ADS  Google Scholar 

  41. A. B. Romeo and N. Falstad, Mon. Not. R. Astron. Soc. 433, 1389 (2013); arXiv: 1302.4291.

    Article  ADS  Google Scholar 

  42. W.-T. Kim and E. C. Ostriker, Astrophys. J. 660, 1232 (2007); arXiv: astro-ph/0701755.

    Article  ADS  Google Scholar 

  43. R. R. Rafikov, Mon. Not. R. Astron. Soc. 323, 445 (2001); arXiv: astro-ph/0007058.

    Article  ADS  Google Scholar 

  44. O. V. Abramova and A. V. Zasov, Astron. Lett. 38, 755 (2012).

    Article  ADS  Google Scholar 

  45. C. Bacchini, F. Fraternali, G. Pezzulli, A. Marasco, G. Iorio, and C. Nipoti, Astron. Astrophys. 632, A127 (2019); arXiv: 1911.03480.

  46. A. V. Mosenkov, N. Y. Sotnikova, V. P. Reshetnikov, D. V. Bizyaev, and S. J. Kautsch, Mon. Not. R. Astron. Soc. 451, 2376 (2015); arXiv: 1505.03383.

  47. D. Bizyaev and S. Mitronova, Astrophys. J. 702, 1567 (2009); arXiv: 0907.3472.

    Article  ADS  Google Scholar 

  48. N. Y. Sotnikova, V. P. Reshetnikov, and A. V. Mosenkov, Astron. Astrophys. Trans. 27, 325 (2012).

    ADS  Google Scholar 

  49. A. V. Zasov, D. V. Bizyaev, D. I. Makarov, and N. V. Tyurina, Astron. Lett. 28, 527 (2002); astro-ph/0208124.

    Article  ADS  Google Scholar 

  50. S. Roychowdhury, J. N. Chengalur, I. D. Karachentsev, and E. I. Kaisina, Mon. Not. R. Astron. Soc. 436, L104 (2013); arXiv: 1308.6200.

    Article  ADS  Google Scholar 

  51. R. Sánchez-Janssen, J. Méndez-Abreu, and J. A. L. Aguerri, Mon. Not. R. Astron. Soc. 406, L65 (2010); arXiv: 1005.4688.

    ADS  Google Scholar 

  52. M. C. Johnson, D. A. Hunter, P. Kamphuis, and J. Wang, Mon. Not. R. Astron. Soc. 465, L49 (2017).

    Article  ADS  Google Scholar 

  53. A. C. Seth, J. J. Dalcanton, and R. S. de Jong, Astron. J. 130, 1574 (2005); astro-ph/0506117.

    Article  ADS  Google Scholar 

  54. N. A. Tikhonov, Astron. Rep. 50, 517 (2006); astro-ph/0610513.

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the antonymous referee for fruitful remarks. Numerical calculations were carried by using the  equipment of the shared research facilities of HPC computing resources at Volgograd State University. We acknowledge the usage of the HyperLeda database (http://leda.univ-lyon1.fr).

The Legacy Surveys consist of three individual and complementary projects: the Dark Energy Camera Legacy Survey (DECaLS; NOAO Proposal ID 2014B-0404; PIs: David Schlegel and Arjun Dey), the Beijing-Arizona Sky Survey (BASS; NOAO Proposal ID 2015A-0801; PIs: Zhou Xu and Xiaohui Fan), and the Mayall z-band Legacy Survey (MzLS; NOAO Proposal ID 2016A-0453; PI: Arjun Dey). DECaLS, BASS and MzLS together include data obtained, respectively, at the Blanco telescope, Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatory (NOAO); the Bok telescope, Steward Observatory, University of Arizona; and the Mayall telescope, Kitt Peak National Observatory, NOAO. The Legacy Surveys project is honored to be permitted to conduct astronomical research on Iolkam Du’ag (Kitt Peak), a mountain with particular significance to the Tohono O’odham Nation.

Funding

NZ was supported by Russian Foundation for Basic Research (project 20-02-00080 A). AZ and NZ are grateful the Program of development of M.V. Lomonosov Moscow State University (Leading Scientific School ‘Physics of stars, relativistic objects and galaxies’) for the financial support. AVK and SSK are grateful the Ministry of Science and Higher Education of the Russian Federation (government task no. 0633-2020-0003, all results of numerical simulations of galaxies dynamics in Section 4).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Zasov or A. V. Khoperskov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zasov, A.V., Khoperskov, A.V., Zaitseva, N.A. et al. On the Formation of Spiral Arms in Dwarf Galaxies. Astron. Rep. 65, 1215–1232 (2021). https://doi.org/10.1134/S106377292112009X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377292112009X

Keywords:

Navigation