Skip to main content
Log in

Cosmological Constraints on a Temporal Variation of the Proton-to-electron Mass Ratio based on the Red-shifted Lines of Extragalactic Argonium

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The sensitivity coefficients of the argonium ground \({{X}^{1}}{{\Sigma }^{ + }}\)-state rotational lines with respect to the reduced molecular mass \(\mu \) are evaluated using the Dunham’s molecular constants accounting for Born–Oppenheimer approximation breakdown. They are used to constrain presumable temporal variation in the proton-to-electron mass ratio \(\gamma = {{m}_{p}}{\text{/}}{{m}_{e}}\) on cosmological time scales by a comparison of absorption lines of extragalactic argonium with their recently measured laboratory counterparts. The \(J = 0 \to 1\) transition frequencies of the most cosmically abundant 36ArH+ and 38ArH+ isotopomers are derived from available ALMA observations of an unnamed foreground galaxy at \(z \approx 0.89\) in the direction of the radio-loud quasar PKS 1830-211. The upper limit of the possible variation \(\Delta \gamma {\text{/}}\gamma \) over the timescale of about 7 Gyr is conservatively estimated to be \( < {\kern 1pt} {{10}^{{ - 5}}}\). Its value is limited by accuracy both of observed transition frequencies and of the adopted redshift \(z\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. D. A. Varshalovich and S. A. Levshakov, JETP Lett. 58, 237 (1993).

    ADS  Google Scholar 

  2. A. V. Ivanchik, E. Rodriguez, P. Petitjean, and D. A. Varshalovich, Astron. Lett. 28, 423 (2002).

    Article  ADS  Google Scholar 

  3. J. Uzan, Living Rev. Relativ. 14, 2 (2011).

    Article  ADS  Google Scholar 

  4. P. Jansen, H. Bethlem, and W. Ubachs, J. Chem. Phys. 140, 010901 (2014).

    Article  ADS  Google Scholar 

  5. E. A. Konovalova, Y. A. Demidov, and A. V. Stolyarov, Opt. Spectrosc. 125, 470 (2018).

    Article  ADS  Google Scholar 

  6. M. T. Murphy, V. V. Flambaum, S. Muller, and C. Henkel, Science (Washington, DC, U. S.) 320, 1611 (2008).

    Article  ADS  Google Scholar 

  7. R. I. Thompson, Mon. Not. R. Astron. Soc. 431, 2576 (2013).

    Article  ADS  Google Scholar 

  8. W. Ubachs, R. Buning, K. Eikema, and E. Reinhold, J. Mol. Spectrosc. 241, 155 (2007).

    Article  ADS  Google Scholar 

  9. J. Bagdonaite, W. Ubachs, M. T. Murphy, and J. B. Whitmore, Astrophys. J. 782, 10 (2014).

    Article  ADS  Google Scholar 

  10. V. V. Meshkov, A. V. Stolyarov, A. V. Ivanchik, and D. A. Varshalovich, JETP Lett. 83, 363 (2006).

    Article  Google Scholar 

  11. C. Henkel, K. M. Menten, M. T. Murphy, N. Jethava, V. V. Flambaum, J. A. Braatz, S. Muller, J. Ott, and R. Q. Mao, Astron. Astrophys. 500, 725 (2009).

    Article  ADS  Google Scholar 

  12. K. M. Menten, R. Gosten, S. Leurini, S. Thorwirth, C. Henkel, B. Klein, C. L. Carilli, and M. J. Reid, Astron. Astrophys. 492, 725 (2008).

    Article  ADS  Google Scholar 

  13. J. Bagdonaite, P. Jansen, C. Henkel, H. L. Bethlem, K. M. Menten, and W. Ubachs, Science (Washington, DC, U. S.) 339, 46 (2013).

    Article  ADS  Google Scholar 

  14. N. Kanekar, W. Ubachs, K. M. Menten, J. Bagdonaite, A. Brunthaler, C. Henkel, S. Muller, H. L. Bethlem, and M. Dapra, Mon. Not. R. Astron. Soc. Lett. 448, L104 (2015).

    Article  ADS  Google Scholar 

  15. S. P. Ellingsen, M. A. Voronkov, S. L. Breen, and J. E. J. Lovell, Astrophys. J. Lett. 747, L7 (2012).

    Article  ADS  Google Scholar 

  16. P. Jansen, L.-H. Xu, I. Kleiner, W. Ubachs, and H. L. Bethlem, Phys. Rev. Lett. 106, 100801 (2011).

    Article  ADS  Google Scholar 

  17. N. Kanekar, Astrophys. J. Lett. 728, L12 (2011).

    Article  ADS  Google Scholar 

  18. L. Bizzocchi, L. Dore, C. Degli Esposti, and F. Tamassia, Astrophys. J. Lett. 820, L26 (2016).

    Article  ADS  Google Scholar 

  19. V. A. Terashkevich, E. Pazyuk, A. Stolyarov, and D. Wiebe, J. Quant. Spectrosc. Rad. Transfer 234, 139 (2019).

    Article  ADS  Google Scholar 

  20. J. L. Dunham, Phys. Rev. 41, 721 (1932).

    Article  ADS  Google Scholar 

  21. J. K. Watson, J. Mol. Spectrosc. 80, 411 (1980).

    Article  ADS  Google Scholar 

  22. H. S. P. Müller, S. Muller, P. Schilke, E. A. Bergin, J. H. Black, M. Gerin, D. C. Lis, D. A. Neufeld, and S. Suri, Astron. Astrophys. 582, L4 (2015).

    Article  ADS  Google Scholar 

  23. T. Wiklind and F. Combes, Nature (London, U.K.) 379, 139 (1996).

    Article  ADS  Google Scholar 

  24. T. Wiklind, F. Combes, and N. Kanekar, Astrophys. J. 864, 73 (2018); arXiv: 1804.05377.

Download references

ACKNOWLEDGMENTS

The ArH+ spectra have been kindly provided by Sébastien Muller.

Funding

This work was supported by Russian Science Foundation (grant no. 18-13-00269).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Stolyarov or D. S. Wiebe.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Dedicated to the memory of our colleague and teacher Dmitry Alexandrovich Varshalovich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terashkevich, V.A., Pazyuk, E.A., Stolyarov, A.V. et al. Cosmological Constraints on a Temporal Variation of the Proton-to-electron Mass Ratio based on the Red-shifted Lines of Extragalactic Argonium. Astron. Rep. 65, 1211–1214 (2021). https://doi.org/10.1134/S1063772921120076

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921120076

Keywords:

Navigation