Skip to main content
Log in

Dynamo beyond the Heliopause: Verification from the Available Data of Voyager 2

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A possible dynamo mechanism beyond the heliopause is proposed to explain the increase in the magnetic field without change in its direction, which was observed by the Voyager 1 and Voyager 2 space probes upon crossing the heliospheric boundary. The necessary conditions for the dynamo realization are listed and it is shown that they are fulfilled beyond the heliopause. The fulfillment of the necessary conditions does not guarantee the realization of the dynamo mechanism, but it creates the prerequisites for it. The paper is based on the report made at the conference “Ideas of S.B. Pikelner and S.A. Kaplan and Modern Astrophysics” (Sternberg Astronomical Institute, Moscow State University, February 8–12, 2021).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. L. F. Burlaga, N. F. Ness, and E. C. Stone, Science (Washington, DC, U. S.) 341, 147 (2013).

    Article  ADS  Google Scholar 

  2. D. A. Gurnett, W. S. Kurth, L. F. Burlaga, and N. F. Ness, Science (Washington, DC, U. S.) 341, 1489 (2013).

    Article  ADS  Google Scholar 

  3. S. M. Krimigis, R. B. Decker, E. C. Roelof, M. E. Hill, C. O. Bostrom, K. Dialynas, G. Gloeckler, D. C. Hamilton, E. P. Keath, and L. J. Lanzerotti, Nat. Astron. 3, 997 (2019).

    Article  ADS  Google Scholar 

  4. W. R. Webber and F. B. McDonald, Geophys. Res. Lett. 40, 1665 (2013).

    Article  ADS  Google Scholar 

  5. M. Opher and J. F. Drake, Astrophys. J. Lett. 778, L26 (2013).

    Article  ADS  Google Scholar 

  6. E. S. Belenkaya, Solar Phys. 290, 2077 (2015).

    Article  ADS  Google Scholar 

  7. E. S. Belenkaya, in Electric Currents in Geospace and Beyond, Ed. by A. Keiling, O. Marghitu, and M. Wheatland, AGU Geophys. Monograph Ser. 235, 207 (2018).

  8. L. F. Burlaga, N. F. Ness, D. B. Berdichevsky, J. Park, L. K. Jian, A. Szabo, E. C. Stone, and J. D. Richardson, Nat. Astron. 3, 1007 (2019).

    Article  ADS  Google Scholar 

  9. J. D. Richardson, J. W. Belcher, P. Garcia-Galindo, and L. F. Burlaga, Nat. Astron. 3, 1019 (2019).

    Article  ADS  Google Scholar 

  10. L. Burlaga, J. Phys.: Conf. Ser. 642, 012003 (2015).

    Google Scholar 

  11. E. S. Belenkaya and M. L. Khodachenko, Int. J. Astron. Astrophys. 2, 81 (2012).

    Article  Google Scholar 

  12. E. S. Belenkaya, M. L. Khodachenko, and I. I. Alexeev, in Characterizing Stellar and Exoplanetary Environments, Ed. by H. Lammer and M. Khodachenko, Astrophys. Space Sci. Libr. 411, 239 (2015).

  13. W. M. Elsasser, J. Geophys. Res. 61, 340 (1956).

    Google Scholar 

  14. J. J. Quenby and W. R. Webber, Mon. Not. R. Astron. Soc. 453, 1297 (2015).

    Article  ADS  Google Scholar 

  15. F. Fraternale, N. V. Pogorelov, J. D. Richardson, and D. Tordella, Astrophys. J. 872, 40 (2019).

    Article  ADS  Google Scholar 

  16. H. K. Moffat, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge Univ. Press, Cambridge, 1978).

    Google Scholar 

  17. V. B. Baranov and H. J. Fahr, J. Geophys. Res. 108 (A3), 1110 (2003).

    Article  Google Scholar 

  18. I. I. Alexeev, J. Geomagn. Geoelectr. 38, 1199 (1986).

    Article  Google Scholar 

  19. I. I. Alexeev and V. V. Kalegaev, J. Geophys. Res. 100, 19267 (1995).

    Article  ADS  Google Scholar 

  20. M. Witte, Astron. Astrophys. 426, 835 (2004).

    Article  ADS  Google Scholar 

  21. I. I. Alexeev, A. P. Kropotkin, and I. S. Veselovsky, Solar Phys. 79, 385 (1982).

    Article  ADS  Google Scholar 

  22. E. N. Parker, Astrophys. J. 401, 137 (1992).

    Article  ADS  Google Scholar 

  23. P. C. Frisch, A. Berdyugin, H. O. Funsten, A. M. Ma-galhaes, et al., J. Phys.: Conf. Ser. 577, 012010 (2014).

    Google Scholar 

  24. N. A. Schwadron, F. C. Adams, E. Christian, P. Desiati, et al., J. Phys.: Conf. Ser. 531, 012010 (2014).

    Google Scholar 

  25. A. Shluter and L. Biermann, Z. Naturforsh. 5a, 237 (1950).

  26. S. I. Vainshtein and Ya. B. Zel’dovich, Sov. Phys. Usp. 15, 159 (1972).

    Article  ADS  Google Scholar 

  27. D. A. Gurnett and W. S. Kurth, Nat. Astron. 3, 1024 (2019).

    Article  ADS  Google Scholar 

  28. G. P. Zank, Ann. Rev. Astron. Astrophys. 53, 449 (2015).

    Article  ADS  Google Scholar 

  29. L. F. Burlaga and N. F. Ness, Astrophys. J. 829, 134 (2016).

    Article  ADS  Google Scholar 

  30. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

  31. L. F. Burlaga, W. S. Kurth, D. A. Gurnett, D. B. Berdichevsky, L. K. Jian, N. F. Ness, J. Park, and A. Szabo, Astrophys. J. 911, 61 (2021).

    Article  ADS  Google Scholar 

Download references

Funding

The author is grateful to the Government of the Russian Federation and the Ministry of Higher Education and Science of the Russian Federation for the support (grant no. 075-15-2020-780 (N13.1902.21.0039)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Belenkaya.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belenkaya, E.S. Dynamo beyond the Heliopause: Verification from the Available Data of Voyager 2. Astron. Rep. 65, 1145–1149 (2021). https://doi.org/10.1134/S1063772921110044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921110044

Keywords:

Navigation