Skip to main content
Log in

On Asymptotic Behavior of Galactic Rotation Curves in Superfluid Vacuum Theory

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The logarithmic superfluid theory of physical vacuum predicts that gravity is an induced phenomenon, which has a multiple-scale structure. At astronomical scales, as the distance from a gravitating center increases, gravitational potential and corresponding spacetime metric are dominated by a Newtonian (Schwarzschild) term, followed by a logarithmic term, finally by linear and quadratic (de Sitter) terms. Correspondingly, rotation curves are predicted to be Keplerian in the inner regions of galaxies, mostly flat in the outer regions, and non-flat in the utmost outer regions. We compare theory’s predictions with the furthest rotation curves data points available for a number of galaxies: using a two-parameter fit, we perform a preliminary estimate which disregards the combined effect of gas and stellar disc, but is relatively simple and uses minimal assumptions for galactic luminous matter. The data strongly points out at the existence of a crossover transition from flat to non-flat regimes at galactic outskirts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. V. C. Rubin, W. K. Ford, Jr., and N. Thonnard, Astrophys. J. 238, 471 (1980).

    Article  ADS  Google Scholar 

  2. P. A. M. Dirac, Nature (London, U.K.) 168, 906 (1951).

    Article  ADS  Google Scholar 

  3. G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  4. K. Huang, A Superfluid Universe (World Scientific, Singapore, 2016).

    Book  Google Scholar 

  5. K. G. Zloshchastiev, Grav. Cosmol. 16, 288 (2010); arXiv: 0906.4282.

  6. K. G. Zloshchastiev, Acta Phys. Polon. B 42, 261 (2011); arXiv: 0912.4139.

    Article  ADS  Google Scholar 

  7. K. G. Zloshchastiev, Phys. Lett. A 375, 2305 (2011); arXiv: 1003.0657.

    Article  ADS  Google Scholar 

  8. V. Dzhunushaliev and K. G. Zloshchastiev, Centr. Eur. J. Phys. 11, 325 (2013); arXiv: 1204.6380.

  9. K. G. Zloshchastiev, Int. J. Mod. Phys. B 33, 1950184 (2019); arXiv: 2001.04688.

  10. K. G. Zloshchastiev, Int. J. Mod. Phys. A 35, 2040032 (2020); arXiv: 2011.11897.

  11. K. G. Zloshchastiev, Universe 6, 180 (2020); arXiv: 2011.12565.

  12. K. G. Zloshchastiev, Low Temp. Phys. 47, 89 (2021); arXiv: 2103.00818.

  13. L. Zhang and W. Hou, Appl. Math. Lett. 102, 106149 (2020). https://doi.org/10.1016/j.aml.2019.106149

    Article  MathSciNet  Google Scholar 

  14. C. J. C. O. Alves, Discrete Contin. Dyn. Syst. 40, 2671 (2020).

    Google Scholar 

  15. J. Shertzer and T. C. Scott, J. Phys. Commun. 4, 065004 (2020).

    Article  Google Scholar 

  16. T. Boudjeriou, J. Elliptic Parabolic Equat. 6, 773 (2020).

  17. F. C. E. Lima and C. A. S. Almeida, Europhys. Lett. 131, 31003 (2020). https://doi.org/10.1209/0295-5075/131/31003

    Article  ADS  Google Scholar 

  18. Z. Zhou and Z. Yan, Phys. Lett. A 387, 127010 (2021); arXiv: 2012.02979.

  19. Q. Yang and C. Bai, AIMS Math. 6, 868 (2021).

    Article  MathSciNet  Google Scholar 

  20. K. G. Zloshchastiev, Zeitschr. Naturf. A 73, 619 (2018). https://doi.org/10.1515/zna-2018-0096

    Article  ADS  Google Scholar 

  21. K. G. Zloshchastiev, Eur. Phys. J. B 85, 273 (2012); arXiv: 1204.4652.

    Article  ADS  Google Scholar 

  22. T. C. Scott and K. G. Zloshchastiev, Low Temp. Phys. 45, 1231 (2019); arXiv: 2006.08981.

  23. K. Pardo and D. N. Spergel, Phys. Rev. Lett. 125, 211101 (2020); arXiv: 2007.00555.

  24. P. D. Mannheim and D. Kazanas, Astrophys. J. 342, 635 (1989).

    Article  ADS  MathSciNet  Google Scholar 

  25. D. Grumiller, Phys. Rev. Lett. 105, 211303 (2010); arXiv: 1011.3625.

    Article  ADS  Google Scholar 

  26. H.-N. Lin, M.-H. Li, X. Li, and Z. Chang, Mon. Not. R. Astron. Soc. 430, 450 (2013); arXiv: 1209.3532.

    Article  ADS  Google Scholar 

  27. A. Toomre, Astrophys. J. 138, 385 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Casertano, Mon. Not. R. Astron. Soc. 203, 735 (1983).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Proofreading of the manuscript by P. Stannard is greatly appreciated.

Funding

This work is based on the research supported by Department of Higher Education and Training of South Africa, and in part by the National Research Foundation of South Africa (Grants Nos. 95965, 131604 and 132202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Zloshchastiev.

Additional information

Paper presented at the Fourth Zeldovich meeting, an international conference in honor of Ya.B. Zeldovich held in Minsk, Belarus, on September 7–11, 2020. Published by the recommendation of the special editors: S.Ya. Kilin, R. Ruffini, and G.V. Vereshchagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zloshchastiev, K.G. On Asymptotic Behavior of Galactic Rotation Curves in Superfluid Vacuum Theory. Astron. Rep. 65, 1078–1083 (2021). https://doi.org/10.1134/S1063772921100437

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921100437

Navigation