Skip to main content
Log in

Self Interactions in Warm Dark Matter: A View from Cosmological Perturbation Theory

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We provide a short overview into Self Interacting Warm Dark Matter (SI-WDM) models from the context of Cosmological Perturbation Theory (CPT). The aim is to generalize conventional Cold DM models, by proposing a more general framework both from theoretical as well as from numerical fronts, on the effects of SI-WDM on the linear power spectrum and its consequent imprints on non-linear structure formation. After describing the theoretical background, we present useful analytic expressions for the collision terms in the Boltzmann Hierarchies, and provide some numerical results within the Relaxation Time Approximation (RTA). We consider massive DM particles that decouple from the hot plasma while relativistic. We introduce elastic DM–DM interactions under an ansatz for the scattering amplitude that accounts for massive mediators on an effective way. Paying special attention to the self interaction decoupling mechanisms, we analyze scenarios where the particle undergoes self decoupling while relativistic as well as while non relativistic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. G. Bertone, D. Hooper, and J. Silk, Phys. Rep. 405, 279 (2005); hep-ph/0404175.

    Article  ADS  Google Scholar 

  2. G. Bertone and T. M. P. Tait, Nature (London, U.K.) 562, 51 (2018); arXiv: 1810.01668.

  3. S. S. McGaugh, Can. J. Phys. 93, 250 (2015); arXiv: 1404.7525.

    Article  ADS  Google Scholar 

  4. J. L. Feng, Ann. Rev. Astron. Astrophys. 48, 495 (2010); arXiv: 1003.0904.

  5. M. Khlopov, Prog. Part. Nucl. Phys. 116, 103824 (2021).

    Article  Google Scholar 

  6. N. A. Bahcall, J. P. Ostriker, S. Perlmutter, and P. J. Steinhardt, Science (Washington, DC, U. S.) 284, 1481 (1999); astro-ph/9906463.

  7. T. Tröster, A. G. Sánchez, M. Asgari, C. Blake, M. Crocce, C. Heymans, H. Hildebrandt, B. Joachimi, S. Joudaki, A. Kannawadi, et al., Astron. Astrophys. 633, L10 (2020); arXiv: 1909.11006.

  8. J. A. Peacock, Cosmological Physics (Cambridge Univ. Press, Cambridge, 1999).

    MATH  Google Scholar 

  9. A. L. Melott, Astrophys. J. 289, 2 (1985).

    Article  ADS  Google Scholar 

  10. J. S. Bullock and M. Boylan-Kolchin, Ann. Rev. Astron. Astrophys. 55, 343 (2017); arXiv: 1707.04256.

  11. M. R. Joung, R. Cen, and G. L. Bryan, Astrophys. J. Lett. 692, L1 (2009); arXiv: 0805.3150.

    Article  ADS  Google Scholar 

  12. A. Klypin, I. Karachentsev, D. Makarov, and O. Nasonova, Mon. Not. R. Astron. Soc. 454, 1798 (2015); arXiv: 1405.4523.

    Article  ADS  Google Scholar 

  13. A. Boyarsky, M. Drewes, T. Lasserre, S. Mertens, and O. Ruchayskiy, Prog. Part. Nucl. Phys. 104, 1 (2019); arXiv: 1807.07938.

  14. D. J. E. Marsh, Phys. Rep. 643, 1 (2016); arXiv: 1510.07633.

  15. S. Tulin and H.-B. Yu, Phys. Rep. 730, 1 (2018); arXiv: 1705.02358.

  16. S. I. Blinnikov and M. Y. Khlopov, Sov. Astron. 27, 371 (1983).

    ADS  Google Scholar 

  17. Z. Berezhiani, Int. J. Mod. Phys. A 19, 3775 (2004); hep-ph/0312335.

    Article  ADS  Google Scholar 

  18. L. B. Okun’, Phys. Usp. 50, 380 (2007); hep-ph/0606202.

  19. S. Tulin, H.-B. Yu, and K. M. Zurek, Phys. Rev. Lett. 110, 111301 (2013); arXiv: 1210.0900.

    Article  ADS  Google Scholar 

  20. L. G. van den Aarssen, T. Bringmann, and C. Pfrommer, Phys. Rev. Lett. 109, 231301 (2012); arXiv: 1205.5809.

    Article  ADS  Google Scholar 

  21. D. N. Spergel and P. J. Steinhardt, Phys. Rev. Lett. 84, 3760 (2000); astro-ph/9909386.

    Article  ADS  Google Scholar 

  22. M. A. Buen-Abad, G. Marques-Tavares, and M. Schmaltz, Phys. Rev. D 92, 023531 (2015); arXiv: 1505.03542.

  23. F.-Y. Cyr-Racine and K. Sigurdson, Phys. Rev. D 87, 103515 (2013); arXiv: 1209.5752.

    Article  ADS  Google Scholar 

  24. L. Johns and G. M. Fuller, Phys. Rev. D 100, 023533 (2019); arXiv: 1903.08296.

  25. A. Fitts, M. Boylan-Kolchin, B. Bozek, J. S. Bullock, A. Graus, V. Robles, P. F. Hopkins, K. El-Badry, S. Garrison-Kimmel, C.-A. Faucher-Giguère, et al., Mon. Not. R. Astron. Soc. 490, 962 (2019); arXiv: 1811.11791.

  26. R. Yunis, C. R. Argüelles, and D. López Nacir, J. Cosmol. Astropart. Phys. 2020, 041 (2020); arXiv: 2002.05778.

  27. S. Hannestad and R. J. Scherrer, Phys. Rev. D 62, 043522 (2000); astro-ph/0003046.

    Article  ADS  Google Scholar 

  28. C.-P. Ma and E. Bertschinger, Astrophys. J. 455, 7 (1995); astro-ph/9506072.

    Article  ADS  Google Scholar 

  29. J. Lesgourgues and T. Tram, J. Cosmol. Astropart. Phys. 2011, 032 (2011); arXiv: 1104.2935.

  30. J. Lesgourgues, arXiv: 1104.2934 (2011).

  31. I. M. Oldengott, T. Tram, C. Rampf, and Y. Y. Y. Wong, J. Cosmol. Astropart. Phys. 2017, 027 (2017); arXiv: 1706.02123.

  32. S. W. Randall, M. Markevitch, D. Clowe, A. H. Gonzalez, and M. Bradač, Astrophys. J. 679, 1173 (2008); arXiv: 0704.0261.

    Article  ADS  Google Scholar 

  33. C. R. Argüelles, N. E. Mavromatos, J. A. Rueda, and R. Ruffini, J. Cosmol. Astropart. Phys. 2016, 038 (2016); arXiv: 1502.00136.

  34. F.-Y. Cyr-Racine, K. Sigurdson, J. Zavala, T. Bringmann, M. Vogelsberger, and C. Pfrommer, Phys. Rev. D 93, 123527 (2016); arXiv: 1512.05344.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Yunis.

Additional information

Paper presented at the Fourth Zeldovich meeting, an international conference in honor of Ya.B. Zeldovich held in Minsk, Belarus, on September 7–11, 2020. Published by the recommendation of the special editors: S.Ya. Kilin, R. Ruffini, and G.V. Vereshchagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yunis, R.I., Argüelles, C.R., Scóccola, C.G. et al. Self Interactions in Warm Dark Matter: A View from Cosmological Perturbation Theory. Astron. Rep. 65, 1068–1073 (2021). https://doi.org/10.1134/S1063772921100425

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921100425

Navigation