Skip to main content
Log in

Analyses of Specific Aspects of the Evolution of Antimatter Glubular Clusters Domains

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

In the Affleck–Dine–Linde scenario of baryosynthesis, there exists a possibility of creation of sufficiently large regions with antibaryon excess, which can evolve in antimatter globular clusters only in the result of domain evolution and only at the stage of galaxy formation; their number is demonstrated to increase as a function of time, being determined by the mechanism of antibaryon excess generation and on the properties of the inflaton field and related ones, the Hubble-parameter function at the inflationary stage, as well as the field initial conditions in the Einstein field Equations. Possible discovery of antimatter globular clusters would specify the mechanisms of inflation, baryosynthesis and evolution of antibaryon domains in a baryon-asymmetrical Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The characteristical features of the antimatter domains are defined both in the gravity background and within the antibaryon-nucleosynthesis mechanisms. The minimal mass for an antimatter domain to evolve in time without being annihilated is estimated as \( \simeq {\kern 1pt} {{10}^{3}}{{M}_{ \odot }}\) for a temperature below 4000 K, with the initial condition of the time \({{t}_{0}}\) corresponding to a temperature of 9000 K; the antimatter density in the antimatter domains is defined as \(3\) orders of magnitude less than the baryon density. For these features, correlation functions can be written after solving the fluid equation for the diffusion coefficient \(D(t)\) via the baryon-to-photon ratio \(r \equiv {{n}_{b}}{\text{/}}{{n}_{{\tilde {\gamma }}}}\), i.e., \(\tfrac{{\partial t}}{{\partial t}} = D(t)\tfrac{{{{\partial }^{2}}t}}{{\partial {{x}^{2}}}}\), \(r({\mathbf{R}},{{t}_{0}}) = {{r}_{0}}\), \(x < 0\), \(r({\mathbf{R}},{{t}_{0}}) = 0\), \(x > 0\), to evaluate the physical distance covered by atoms after the recombination age until the present time.

  2. More fitting expressions can be calculated, according as a function of, and according to, the choice of the statistical estimators most competent with the experimental verification aimed at. Two-point correlation functions, through the use of estimators (Hamilton estimator, Davis-and-Peebles estimator, Landy–Szalay estimator, …), ought to be compared with the evaluation of binomial distributions of pairs of correlated objects; the distances between pairs of antimatter domains can be therefore be estimated after the evaluation of the correlation function \(N(r)\).

REFERENCES

  1. F. W. Stecker and J. L. Puget, Astrophys. J. 178, 57 (1972).

    Article  ADS  Google Scholar 

  2. G. Steigman, Ann. Rev. Astron. Astrophys. 14, 339 (1976).

    Article  ADS  Google Scholar 

  3. A. D. Dolgov, Nucl. Phys. B 113, 40 (2002); astro-ph/0207441.

    Article  Google Scholar 

  4. A. G. Cohen, A. de Rújula, and S. L. Glashow, Astrophys. J. 495, 539 (1998); astro-ph/9707087.

    Article  ADS  Google Scholar 

  5. W. H. Kinney, E. W. Kolb, and M. S. Turner, Phys. Rev. Lett. 79, 2620 (1997); astro-ph/9704070.

    Article  ADS  Google Scholar 

  6. M. Y. Khlopov, R. V. Konoplich, R. Mignani, S. G. Rubin, and A. S. Sakharov, Astropart. Phys. 12, 367 (2000); astro-ph/9810228.

    Article  ADS  Google Scholar 

  7. M. Y. Khlopov, Grav. Cosmol. 4, 69 (1998).

    ADS  Google Scholar 

  8. V. M. Chechetkin, M. Y. Khlopov, M. G. Sapozhnikov, and Y. B. Zeldovich, Phys. Lett. B 118, 329 (1982).

    Article  ADS  Google Scholar 

  9. V. M. Chechetkin, M. Y. Khlopov, and M. G. Sapozhnikov, Nuovo Cim. Riv. Ser. 5, 1 (1982).

    Article  Google Scholar 

  10. M. Y. Khlopov, S. G. Rubin, and A. S. Sakharov, Phys. Rev. D 62, 083505 (2000), hep-ph/0003285.

    Article  ADS  Google Scholar 

  11. S. I. Blinnikov, A. D. Dolgov, and K. A. Postnov, Phys. Rev. D 92, 023516 (2015); arXiv: 1409.5736.

    Article  ADS  Google Scholar 

  12. Y. B. Zel’dovich, I. Y. Kobzarev, and L. B. Okun’, Sov. Phys. JETP 40, 1 (1975).

    ADS  Google Scholar 

  13. S. Loertscher, V. Muir, and P. G. Taylor, Commun. Stat. - Theory Methods 46, 4579 (2017); https://doi.org/10.1080/03610926.2015.1088033

    Article  Google Scholar 

  14. S. Heinrich, J. Complexity 6, 231 (1990).

    Article  MathSciNet  Google Scholar 

  15. J.-P. Dai and J.-Q. Xia, Astrophys. J. 905, 127 (2020); arXiv: 2008.02970.

  16. A. Pontzen and A. Challinor, Class. Quantum Grav. 28, 185007 (2011); arXiv: 1009.3935.

  17. E. J. King and P. Coles, Class. Quantum Grav. 24, 2061 (2007); astro-ph/0612168.

  18. R. Sung and P. Coles, J. Cosmol. Astropart. Phys. 2011, 036 (2011); arXiv: 1004.0957.

  19. R. Sung, J. Short, and P. Coles, Mon. Not. R. Astron. Soc. 412, 492 (2011); arXiv: 1004.1925.

    Article  ADS  Google Scholar 

  20. R. Sung and P. Coles, Class. Quantum Grav. 26, 172001 (2009); arXiv: 0905.2307.

  21. A. Maselli, A. Sabatucci, and O. Benhar, arXiv: 2010.03581 (2020).

  22. N. Beisert, A. A. Tseytlin, and K. Zarembo, Nucl. Phys. B 715, 190 (2005); hep-th/0502173.

    Article  ADS  Google Scholar 

  23. Y. Miao, E. Ilievski, and O. Gamayun, arXiv: 2010.07232 (2020).

  24. A. Monnai, Phys. Rev. C 86, 014908 (2012); arXiv: 1204.4713.

    Article  ADS  Google Scholar 

  25. I. N. Mishustin, Nucl. Phys. A 734, 36 (2004); nucl-th/0311044.

    Article  ADS  Google Scholar 

  26. V. Poulin, P. Salati, I. Cholis, M. Kamionkowski, and J. Silk, Phys. Rev. D 99, 023016 (2019); arXiv: 1808.08961.

Download references

Funding

The research by M.Yu.K. was financially supported by Southern Federal University, 2020 Project VnGr/2020-03-IF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Lecian.

Additional information

Paper presented at the Fourth Zeldovich meeting, an international conference in honor of Ya.B. Zeldovich held in Minsk, Belarus, on September 7–11, 2020. Published by the recommendation of the special editors: S.Ya. Kilin, R. Ruffini, and G.V. Vereshchagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lecian, O.M., Khlopov, M.Y. Analyses of Specific Aspects of the Evolution of Antimatter Glubular Clusters Domains. Astron. Rep. 65, 967–972 (2021). https://doi.org/10.1134/S106377292110019X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377292110019X

Navigation