Skip to main content
Log in

Curvature Invariants and Black Hole Horizons

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Black hole horizons are teleological in nature, that is, for locating them in a given spacetime it is necessary to know the entire evolution of the universe. Thus, it has been argued that black hole horizons cannot be observed by any astrophysical measurement. Furthermore, this nonlocal feature of the horizon seems to contradict the very basic foundation of general relativity, which is a local field theory. In this report, we will review two recently formulated local methods for detecting the black hole horizon based on the scalar polynomial curvature invariants and the Cartan curvature invariants, respectively. Then, we will enlighten both the conceptual and computational improvements with respect to the standard techniques which have been adopted so far for tackling this task. Finally, we will discuss the most relevant applications of our methods in numerical relativity both for gravitational-waves simulations in astrophysics, and in the study of the quark-gluon plasma in light of the AdS/CFT correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (W.H. Freeman, San Francisco, 1973).

    Google Scholar 

  2. M. A. Abramowicz, W. Kluźniak, and J. P. Lasota, Astron. Astrophys. 396, L31 (2002); astro-ph/0207270.

    Article  ADS  Google Scholar 

  3. R. Penrose, Phys. Rev. Lett. 14, 57 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  4. B. P. Abbott, R. Abbott, T. D. Abbott, M. R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. X. Adhikari, et al., Phys. Rev. Lett. 116, 241103 (2016); gr-qc/1606.04855.

  5. M. Rees, R. Ruffini, and J. A. Wheeler, Black Holes, Gravitational Waves, and Cosmology: An Introduction to Current Research (Gordon and Breach, New York, 1974).

    Google Scholar 

  6. J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Alcubierre, Introduction to 3+1 Numerical Relativity (Oxford Univ. Press, New York, 2012).

    MATH  Google Scholar 

  8. L. Rezzolla and O. Zanotti, Relativistic Hydrodynamics (Oxford Univ. Press, 2013).

    Book  Google Scholar 

  9. D. Gregoris, Y. C. Ong, and B. Wang, Eur. Phys. J. C 79, 925 (2019); gr-qc/1902.05565.

  10. D. Gregoris, Y. C. Ong, and B. Wang, Eur. Phys. J. C 80, 159 (2020); gr-qc/1911.01809.

  11. M. Abdelqader and K. Lake, Phys. Rev. D 91, 084017 (2015); gr-qc/1412.8757.

  12. D. N. Page and A. A. Shoom, Phys. Rev. Lett. 114, 141102 (2015); gr-qc/1501.03510.

  13. D. Brooks, P. C. Chavy-Waddy, A. A. Coley, A. Forget, D. Gregoris, M. A. H. MacCallum, and D. D. McNutt, Gen. Relat. Grav. 50, 37 (2018); gr-qc/1709.03362.

  14. A. Ashtekar and B. Krishnan, Living Rev. Relat. 7, 10 (2004); gr-qc/0407042.

  15. A. Coley and D. McNutt, Class. Quantum Grav. 35, 025013 (2018); gr-qc/1710.08773.

  16. E. Cartan, Leçons sur la Geometrie des Espaces de Riemann (Gauthier-Villars, Paris, 1946).

    MATH  Google Scholar 

  17. M. Bañados, C. Teitelboim, and J. Zanelli, Phys. Rev. Lett. 69, 1849 (1992); hep-th/9204099.

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Carlip, arXiv: gr-qc/9503024 (1995).

  19. F. C. Sousa, J. B. Fonseca, and C. Romero, Class. Quantum Grav. 25, 035007 (2008); gr-qc/0705.0758.

  20. A. Tavlayan and B. Tekin, Phys. Rev. D 101, 084034 (2020); hep-th/2002.01135.

  21. S. W. Hawking, J. Math. Phys. 9, 598 (1968).

    Article  ADS  Google Scholar 

  22. S. A. Hayward, Phys. Rev. D 49, 831 (1994); g-r‑qc/9303030.

    Article  ADS  MathSciNet  Google Scholar 

  23. J. Kormendy and L. C. Ho, Ann. Rev. Astron. Astrophys. 51, 511 (2013); astro-ph.CO/1304.7762.

    Article  ADS  Google Scholar 

  24. N. Kaloper, M. Kleban, and D. Martin, Phys. Rev. D 81, 104044 (2010); hep-th/1003.4777.

  25. V. Faraoni, A. F. Zambrano Moreno, and R. Nandra, Phys. Rev. D 85, 083526 (2012); gr-qc/1202.0719.

  26. R. Nandra, A. N. Lasenby, and M. P. Hobson, Mon. Not. R. Astron. Soc. 422, 2945 (2012); gr-qc/1104.4458.

  27. V. F. Cardone, C. Tortora, A. Troisi, and S. Capozziello, Phys. Rev. D 73, 043508 (2006); astro-ph/0511528.

    Article  ADS  Google Scholar 

  28. T. Johannsen and D. Psaltis, Phys. Rev. D 83, 124015 (2011); gr-qc/1105.3191.

Download references

ACKNOWLEDGMENTS

The author thanks the organizers of the fourth (virtual) Zel’dovich conference.

Funding

D.G. acknowledges support from China Postdoctoral Science Foundation (grant no. 2019M661944), and from the 2020 Galaxies travel award (Galaxies is an open access journal by MDPI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Gregoris.

Additional information

Paper presented at the Fourth Zeldovich meeting, an international conference in honor of Ya.B. Zeldovich held in Minsk, Belarus, on September 7–11, 2020. Published by the recommendation of the special editors: S.Ya. Kilin, R. Ruffini, and G.V. Vereshchagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gregoris, D. Curvature Invariants and Black Hole Horizons. Astron. Rep. 65, 947–951 (2021). https://doi.org/10.1134/S1063772921100127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921100127

Navigation