Skip to main content
Log in

Understanding Convection in the Core-Collapse Supernovae Engine

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Understanding the nature of the standard engine behind core-collapse supernovae (SNe) has been an active area of research for over 60 yr pushing the limits of computational science. Driven by observations, scientists have developed and refined a model that not only explains existing observations but made predictions that have since been validated by subsequent data. Turbulent-driven convection plays a key role in this explosive engine and producing quantitatively accurate supernova models requires understanding this convection. Here, we review the convective-engine and discuss improved methods to study this convection to solve the supernova problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. As the supernova blasts through the circumstellar medium, it slows down, producing a reverse shock that runs back through the supernova ejecta, reheating it. This heating leads causes the remnant to light up and this is what we observe.

REFERENCES

  1. F. Zwicky, Astrophys. J. 88, 522 (1938).

    Article  ADS  Google Scholar 

  2. P. Podsiadlowski, Proc. Astron. Soc. Pacif. 104, 717 (1992).

    Article  ADS  Google Scholar 

  3. K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, Y. Oyama, N. Sato, A. Suzuki, M. Takita, Y. Totsuka, T. Kifune, et al., Phys. Rev. Lett. 58, 1490 (1987).

    Article  ADS  Google Scholar 

  4. R. M. Bionta, G. Blewitt, C. B. Bratton, D. Casper, A. Ciocio, R. Claus, B. Cortez, M. Crouch, S. T. Dye, S. Errede, et al., Phys. Rev. Lett. 58, 1494 (1987).

    Article  ADS  Google Scholar 

  5. P. Podsiadlowski, arXiv: 1702.03973 (2017).

  6. P. A. Pinto and S. E. Woosley, Astrophys. J. 329, 820 (1988).

    Article  ADS  Google Scholar 

  7. C. L. Fryer, A. L. Hungerford, and G. Rockefeller, Int. J. Mod. Phys. D 16, 941 (2007).

    Article  ADS  Google Scholar 

  8. S. A. Colgate, M. Herant, and W. Benz, Phys. Rep. 227, 157 (1993).

    Article  ADS  Google Scholar 

  9. M. Herant, W. Benz, W. R. Hix, C. L. Fryer, and S. A. Colgate, Astrophys. J. 435, 339 (1994); astro-ph/9404024.

    Article  ADS  Google Scholar 

  10. C. L. Fryer and P. A. Young, Astrophys. J. 659, 1438 (2007); astro-ph/0612154.

    Article  ADS  Google Scholar 

  11. C. L. Fryer and M. S. Warren, Astrophys. J. Lett. 574, L65 (2002); astro-ph/0206017.

    Article  ADS  Google Scholar 

  12. M. Herant, Phys. Rep. 256, 117 (1995).

    Article  ADS  Google Scholar 

  13. C. L. Fryer, Astrophys. J. 522, 413 (1999); astro-ph/9902315.

    Article  ADS  Google Scholar 

  14. S. J. Smartt, Ann. Rev. Astron. Astrophys. 47, 63 (2009); arXiv: 0908.0700.

  15. S. E. Woosley, Astrophys. J. 405, 273 (1993).

    Article  ADS  Google Scholar 

  16. U. Hwang, J. M. Laming, C. Badenes, F. Berendse, J. Blondin, D. Cioffi, T. DeLaney, D. Dewey, R. Fesen, K. A. Flanagan, et al., Astrophys. J. Lett. 615, L117 (2004); astro-ph/0409760.

    Article  ADS  Google Scholar 

  17. F. A. Harrison, W. W. Craig, F. E. Christensen, C. J. Hailey, W. W. Zhang, S. E. Boggs, D. Stern, W. R. Cook, K. Forster, P. Giommi, et al., Astrophys. J. 770, 103 (2013); arXiv: 1301.7307.

    Article  ADS  Google Scholar 

  18. S. M. Couch, M. L. Warren, and E. P. O’Connor, Astrophys. J. 890, 127 (2020); arXiv: 1902.01340.

  19. E. Vitense, Zeitschr. Astrophys. 32, 135 (1953).

    ADS  Google Scholar 

  20. A. N. Kolmogorov, J. Fluid Mech. 13, 82 (1962).

    Article  ADS  MathSciNet  Google Scholar 

  21. W. D. Arnett, C. Meakin, M. Viallet, S. W. Campbell, J. C. Lattanzio, and M. Mocák, Astrophys. J. 809, 30 (2015); arXiv: 1503.00342.

  22. D. Livescu, J. R. Ristorcelli, R. A. Gore, S. H. Dean, W. H. Cabot, and A. W. Cook, J. Turbulence 10, 13 (2009).

    Article  ADS  Google Scholar 

  23. C. L. Fryer, K. Belczynski, G. Wiktorowicz, M. Do-minik, V. Kalogera, and D. E. Holz, Astrophys. J. 749, 91 (2012); arXiv: 1110.1726.

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the US Department of Energy through the Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Triad National Security, LLC, for the National Nuclear Security Administration of U.S. Department of Energy (Contract no. 89233218CNA000001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Fryer.

Additional information

Paper presented at the Fourth Zeldovich meeting, an international conference in honor of Ya.B. Zeldovich held in Minsk, Belarus, on September 7–11, 2020. Published by the recommendation of the special editors: S.Ya. Kilin, R. Ruffini, and G.V. Vereshchagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fryer, C.L., Karpov, P. & Livescu, D. Understanding Convection in the Core-Collapse Supernovae Engine. Astron. Rep. 65, 937–941 (2021). https://doi.org/10.1134/S1063772921100103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921100103

Navigation