Skip to main content
Log in

Collapse, Connectivity, and Galaxy Populations in Supercluster Cocoons: the Case of A2142

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The largest galaxy systems in the cosmic web are superclusters, overdensity regions of galaxies, groups, clusters, and filaments. Low-density regions around superclusters are called basins of attraction or cocoons. In my talk I discuss the properties of galaxies, groups, and filaments in the A2142 supercluster and its cocoon at redshift \(z \approx 0.09\). Cocoon boundaries are determined by the lowest density regions around the supercluster. We analyse the structure, dynamical state, connectivity, and galaxy content of the supercluster, and its high density core with the cluster A2142. We show that the main body of the supercluster is collapsing, and long filaments which surround the supercluster are detached from it. Galaxies with very old stellar populations lie not only in the central parts of clusters and groups in the supercluster, but also in the poorest groups in the cocoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. http://skyserver.sdss3.org/dr10/en/help/browser/browser.aspx

REFERENCES

  1. M. Einasto, B. Deshev, P. Tenjes, P. Heinämäki, E. Tempel, L. Juhan Liivamägi, J. Einasto, H. Lietzen, T. Tuvikene, and G. Chon, Astron. Astrophys. 641, A172 (2020); arXiv: 2007.04910.

  2. R. B. Tully, H. Courtois, Y. Hoffman, and D. Pomarède, Nature (London, U.K.) 513, 71 (2014); arXiv: 1409.0880.

    Article  ADS  Google Scholar 

  3. J. Einasto, L. J. Liivamägi, I. Suhhonenko, and M. Einasto, Astron. Astrophys. 630, A62 (2019); arXiv: 1906.03617.

  4. S. Codis, D. Pogosyan, and C. Pichon, Mon. Not. R. Astron. Soc. 479, 973 (2018); arXiv: 1803.11477.

  5. M. A. Aragon Calvo, M. C. Neyrinck, and J. Silk, Open J. Astrophys. 2, 7 (2019); arXiv: 1607.07881.

  6. E. Komatsu, K. M. Smith, J. Dunkley, C. L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. R. Nolta, L. Page, et al., Astrophys. J. Suppl. 192, 18 (2011); arXiv: 1001.4538.

    Article  Google Scholar 

  7. L. J. Liivamagi, E. Tempel, and E. Saar, Astron. Astrophys. 539, A80 (2012); arXiv: 1012.1989.

    Article  Google Scholar 

  8. E. Tempel, A. Tamm, M. Gramann, T. Tuvikene, L. J. Liivamägi, I. Suhhonenko, R. Kipper, M. Einasto, and E. Saar, Astron. Astrophys. 566, A1 (2014); arXiv: 1402.1350.

    Article  ADS  Google Scholar 

  9. E. Tempel, R. S. Stoica, V. J. Martínez, L. J. Liivamägi, G. Castellan, and E. Saar, Mon. Not. R. Astron. Soc. 438, 3465 (2014); arXiv: 1308.2533.

    Article  ADS  Google Scholar 

  10. H. Aihara, C. Allende Prieto, D. An, S. F. Anderson, É. Aubourg, E. Balbinot, T. C. Beers, A. A. Berlind, S. J. Bickerton, D. Bizyaev, et al., Astrophys. J. Suppl. 195, 26 (2011).

    Article  Google Scholar 

  11. M. Gramann, M. Einasto, P. Heinämäki, P. Teerikorpi, E. Saar, P. Nurmi, and J. Einasto, Astron. Astrophys. 581, A135 (2015); arXiv: 1506.05252.

  12. G. Kauffmann, T. M. Heckman, S. D. M. White, S. Charlot, C. Tremonti, J. Brinchmann, G. Bruzual, E. W. Peng, M. Seibert, M. Bernardi, et al., Mon. Not. R. Astron. Soc. 341, 33 (2003); astro-ph/0204055.

    Article  ADS  Google Scholar 

  13. H. S. Hwang, J. Shin, and H. Song, Mon. Not. R. Astron. Soc. 489, 339 (2019); arXiv: 1907.03895.

Download references

ACKNOWLEDGMENTS

I thank my co-authors Boris Deshev, Peeter Tenjes, Pekka Heinämäki, Elmo Tempel, Lauri Juhan Liivamägi, Jaan Einasto, Heidi Lietzen, Taavi Tuvikene, and Gayoung Chon for fruitful and enjoyable collaboration. We are pleased to thank the SDSS Team for the publicly available data releases. The SDSS website is http://www.sdss.org/. We applied in this study R statistical environment.

Funding

The present study was supported by the ETAG projects IUT26-2, IUT40-2, PUT1627, by the European Structural Funds grant for the Centre of Excellence “Dark Matter in (Astro)particle Physics and Cosmology” (TK133), and by MOBTP86.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Einasto.

Additional information

Paper presented at the Fourth Zeldovich meeting, an international conference in honor of Ya.B. Zeldovich held in Minsk, Belarus, on September 7–11, 2020. Published by the recommendation of the special editors: S.Ya. Kilin, R. Ruffini, and G.V. Vereshchagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Einasto, M. Collapse, Connectivity, and Galaxy Populations in Supercluster Cocoons: the Case of A2142. Astron. Rep. 65, 932–936 (2021). https://doi.org/10.1134/S1063772921100085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921100085

Navigation