Skip to main content
Log in

Large-Scale Instability in Supernovae and the Neutrino Spectrum

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

A large fraction of the energy released during the gravitational collapse of the core of a massive star is carried by neutrinos. Neutrinos play the main role in explaining core-collapse supernovae. A self-consistent formulation of the gravitational collapse is solved using multidimensional gas dynamics, taking into account the spectral transport of neutrinos in the framework of neutrino diffusion with diffusion the fluxes limiters. Large scale convection leads to an increase in the mean energy of the neutrinos up to 15 MeV in compare with the spherically-symmetric case, which is important for explaining supernovae. Additionally we considered the collapse in the 3D case with the neutrino transport without the spectrum to specify the role of the modest rotation in the formation of the large scale convection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. W. A. Fowler and F. Hoyle, Astrophys. J. Suppl. 9, 201 (1964).

    Article  Google Scholar 

  2. R. Akaho, A. Harada, H. Nagakura, K. Sumiyoshi, W. Iwakami, H. Okawa, S. Furusawa, H. Matsufuru, and S. Yamada, arXiv: 2010.10780 (2020).

  3. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 56, 193 (2012).

    Article  ADS  Google Scholar 

  4. H. A. Bethe, Rev. Mod. Phys. 62, 801 (1990).

    Article  ADS  Google Scholar 

  5. V. S. Imshennik and D. K. Nadezhin, Astrophys. Space Phys. Rev. 8, 1 (1989).

    ADS  Google Scholar 

  6. H.-T. Janka, K. Langanke, A. Marek, G. Martínez-Pinedo, and B. Müller, Phys. Rep. 442, 38 (2007); arXiv: astro-ph/0612072.

    Article  ADS  Google Scholar 

  7. M. Herant, W. Benz, W. R. Hix, C. L. Fryer, and S. A. Colgate, Astrophys. J. 435, 339 (1994); arXiv: astro-ph/9404024.

    Article  ADS  Google Scholar 

  8. A. Burrows, J. Hayes, and B. A. Fryxell, Astrophys. J. 450, 830 (1995); arXiv: astro-ph/9506061.

    Article  ADS  Google Scholar 

  9. V. M. Chechetkin, S. D. Ustyugov, A. A. Gorbunov, and V. I. Polezhaev, Astron. Lett. 23, 30 (1997).

    ADS  Google Scholar 

  10. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 60, 655 (2016).

    Article  ADS  Google Scholar 

  11. V. M. Chechetkin and A. G. Aksenov, Phys. At. Nucl. 81, 128 (2018).

    Article  Google Scholar 

  12. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 62, 251 (2018).

    Article  ADS  Google Scholar 

  13. V. M. Suslin, S. D. Ustyugov, V. M. Chechetkin, and G. P. Churkina, Astron. Rep. 45, 241 (2001).

    Article  ADS  Google Scholar 

  14. I. V. Baikov, V. M. Suslin, V. M. Chechetkin, V. Bychkov, and L. Stenflo, Astron. Rep. 51, 274 (2007).

    Article  ADS  Google Scholar 

  15. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 58, 442 (2014).

    Article  ADS  Google Scholar 

  16. I. V. Baikov and V. M. Chechetkin, Astron. Rep. 48, 229 (2004).

    Article  ADS  Google Scholar 

  17. A. G. Aksenov and V. M. Chechetkin, Astron. Rep. 63, 900 (2019).

    Article  ADS  Google Scholar 

  18. J. C. Dolence, A. Burrows, and W. Zhang, Astrophys. J. 800, 10 (2015); arXiv: 1403.6115.

    Article  ADS  Google Scholar 

  19. A. G. Aksenov, Comput. Math. Math. Phys. 55, 1752 (2015).

    Article  MathSciNet  Google Scholar 

  20. A. G. Aksenov, V. M. Chechetkin, and V. F. Tishkin, Math. Models Comput. Simul. 11, 360 (2019).

    Article  MathSciNet  Google Scholar 

  21. G. Vereshchagin and A. Aksenov, Relativistic Kinetic Theory With Applications in Astrophysics and Cosmology (Cambridge Univ. Press, Cambridge, 2017).

    Book  Google Scholar 

  22. A. G. Aksenov, IOP Conf. Ser.: Mater. Sci. Eng. 927, 012037 (2020). https://doi.org/10.1088%2F1757-899x%2F927%2F1%2F012037

  23. G. S. Bisnovatyi-Kogan, Astrophysics 55, 387 (2012); arXiv: 1203.0997.

    Article  ADS  Google Scholar 

  24. A. G. Aksenov and S. I. Blinnikov, Astron. Astrophys. 290, 674 (1994).

    ADS  Google Scholar 

  25. A. Burrows, Astrophys. J. Lett. 318, L57 (1987).

    Article  ADS  Google Scholar 

  26. S. M. Couch and C. D. Ott, Astrophys. J. Lett. 778, L7 (2013); arXiv: 1309.2632.

    Article  ADS  Google Scholar 

  27. A. Wongwathanarat, E. Müller, and H.-T. Janka, Astron. Astrophys. 577, A48 (2015); arXiv: 1409.5431.

    Article  ADS  Google Scholar 

  28. S. M. Couch and C. D. Ott, Astrophys. J. 799, 5 (2015); arXiv: 1408.1399.

    Article  ADS  Google Scholar 

  29. D. Radice, C. D. Ott, E. Abdikamalov, S. M. Couch, R. Haas, and E. Schnetter, Astrophys. J. 820, 76 (2016); arXiv: 1510.05022.

  30. R. M. Bionta, G. Blewitt, C. B. Bratton, D. Casper, and A. Ciocio, Phys. Rev. Lett. 58, 1494 (1987).

    Article  ADS  Google Scholar 

  31. K. Hirata, T. Kajita, M. Koshiba, M. Nakahata, and Y. Oyama, Phys. Rev. Lett. 58, 1490 (1987).

    Article  ADS  Google Scholar 

  32. R. Schaeffer, Y. Declais, and S. Jullian, Nature (London, U.K.) 330, 142 (1987).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project 20-11-20165).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Aksenov.

Additional information

Paper presented at the Fourth Zeldovich meeting, an international conference in honor of Ya.B. Zeldovich held in Minsk, Belarus, on September 7–11, 2020. Published by the recommendation of the special editors: S.Ya. Kilin, R. Ruffini, and G.V. Vereshchagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chechetkin, V.M., Aksenov, A.G. Large-Scale Instability in Supernovae and the Neutrino Spectrum. Astron. Rep. 65, 916–920 (2021). https://doi.org/10.1134/S106377292110005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377292110005X

Navigation