Skip to main content

MHD Model of the Interaction of a Coronal Mass Ejection with the Hot Jupiter HD 209458b

Abstract

Most hot Jupiters have extended envelopes of gas that spread beyond their Roche lobes. A typical envelope is weakly gravitationally bound to the planet and, therefore, its structure and properties are strongly affected by stellar wind disturbances, for example, coronal mass ejections. Earlier, we performed gas-dynamic modeling of the interaction of a narrow coronal mass ejection (CME) with the envelope of the hot Jupiter HD 209458b. In this study, we investigate the influence of the planet’s magnetic field and stellar wind on the structure and dynamics of the HD 209458b envelope exposed to a similar CME. For this, an MHD model of the CME interaction with the envelope was developed. It was assumed that the field of the planet had a generally accepted value and corresponded to 1/10 of the magnetic moment of Jupiter. The field of the star was assumed to be weak (10–3 G), which ensured the super-Alfvén flow of the stellar wind around the planet. The comparison of the MHD simulation with gas-dynamic calculations shows that, for the adopted values of the fields of the planet and the star, the effect of the magnetic field on the envelope is not decisive and the qualitative picture of the flow does not change. At the same time, taking magnetic fields into account leads to a change in the quantitative characteristics of the envelope and the mass loss rate, which can be important in determining the evolutionary status of the exoplanet.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

REFERENCES

  1. 1

    D. Charbonneau, T. M. Brown, D. W. Latham, and M. Mayor, Astrophys. J. 529, L45 (2000).

    ADS  Article  Google Scholar 

  2. 2

    A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Desert, G. E. Ballester, et al., Nature (London, U.K.) 422, 143 (2003).

    ADS  Article  Google Scholar 

  3. 3

    D. V. Bisikalo, P. V. Kaigorodov, D. E. Ionov, and V. I. Shematovich, Astron. Rep. 57, 715 (2013).

    ADS  Article  Google Scholar 

  4. 4

    D. Bisikalo, P. Kaygorodov, D. Ionov, V. Shematovich, et al., Astrophys. J. 764, 19 (2013).

    ADS  Article  Google Scholar 

  5. 5

    J. L. Linsky, H. Yang, K. France, C. S. Froning, et al., Astrophys. J. 717, 1291 (2010).

    ADS  Article  Google Scholar 

  6. 6

    D. V. Bisikalo and A. A. Cherenkov, Astron. Rep. 60, 183 (2016).

    ADS  Article  Google Scholar 

  7. 7

    A. Cherenkov, D. Bisikalo, L. Fossati, and C. Möstl, Astrophys. J. 846, 31 (2017).

    ADS  Article  Google Scholar 

  8. 8

    P. V. Kaigorodov, E. A. Ilyina, and D. V. Bisikalo, Astron. Rep. 63, 365 (2019).

    ADS  Article  Google Scholar 

  9. 9

    A. S. Arakcheev, A. G. Zhilkin, P. V. Kaigorodov, D. V. Bisikalo, and A. G. Kosovichev, Astron. Rep. 61, 932 (2017).

    ADS  Article  Google Scholar 

  10. 10

    K. G. Kislyakova, M. Holmström, H. Lammer, et al., Science (Washington, DC, U. S.) 346, 981 (2014).

    ADS  Article  Google Scholar 

  11. 11

    A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 63, 550 (2019).

    ADS  Article  Google Scholar 

  12. 12

    A. G. Zhilkin, D. V. Bisikalo, and P. V. Kaygorodov, Astron. Rep. 64, 259 (2020).

    ADS  Article  Google Scholar 

  13. 13

    A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 64, 563 (2020).

    ADS  Article  Google Scholar 

  14. 14

    A. G. Zhilkin, D. V. Bisikalo, and P. V. Kaigorodov, Astron. Rep. 64, 159 (2020).

    ADS  Article  Google Scholar 

  15. 15

    D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  16. 16

    A. G. Zhilkin, D. V. Bisikalo, and A. A. Boyarchuk, Phys. Usp. 55, 115 (2012).

    ADS  Article  Google Scholar 

  17. 17

    T. Tanaka, J. Comp. Phys. 111, 381 (1994).

    ADS  Article  Google Scholar 

  18. 18

    K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. de Zeeuw, J. Comp. Phys. 154, 284 (1999).

    ADS  Article  Google Scholar 

  19. 19

    A. A. Cherenkov, D. V. Bisikalo, and A. G. Kosovichev, Mon. Not. R. Astron. Soc. 475, 605 (2018).

    ADS  Article  Google Scholar 

  20. 20

    D. V. Bisikalo, V. I. Shematovich, P. V. Kaigorodov, and A. G. Zhilkin, Gaseous Envelopes of Exoplanets– Hot Jupiters (Nauka, Moscow, 2020) [in Russian].

    Google Scholar 

  21. 21

    M. J. Owens and R. J. Forsyth, Living Rev. Solar Phys. 10, 5 (2013).

    ADS  Article  Google Scholar 

  22. 22

    E. N. Parker, Astrophys. J. 128, 664 (1958).

    ADS  Article  Google Scholar 

  23. 23

    E. J. Weber and L. Davis, Jr., Astrophys. J. 148, 217 (1967).

    ADS  Article  Google Scholar 

  24. 24

    V. B. Baranov and K. V. Krasnobaev, Hydrodynamic Theory of Cosmic Plasma (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  25. 25

    G. L. Withbroe, Astrophys. J. 325, 442 (1988).

    ADS  Article  Google Scholar 

  26. 26

    W. M. Farrell, J. S. Halekas, R. M. Killen, G. T. Delory, et al., J. Geophys. Res. Planets 117, E00K04 (2012).

    Article  Google Scholar 

  27. 27

    C. Möstl, K. Amla, J. R. Hall, P. C. Liewer, et al., Astrophys. J. 787, 119, (2014).

    ADS  Article  Google Scholar 

  28. 28

    Y. D. Liu, J. D. Richardson, C. Wang, and J. G. Luhmann, Astrophys. J. 788, L28, (2014).

    ADS  Article  Google Scholar 

  29. 29

    P. Cargo and G. Gallice, J. Comput. Phys. 136, 446 (1997).

    ADS  MathSciNet  Article  Google Scholar 

  30. 30

    S. R. Chakravarthy and S. Osher, AIAA Papers No. 85-0363 (1985).

  31. 31

    A. G. Zhilkin, A. V. Sobolev, D. V. Bisikalo, and M. M. Gabdeev, Astron. Rep. 63, 751 (2019).

    ADS  Article  Google Scholar 

  32. 32

    A. Dedner, F. Kemm, D. Kroner, C.-D. Munz, T. Schnitzer, and M. Wesenberg, J. Comp. Phys. 175, 645 (2002).

    ADS  Article  Google Scholar 

  33. 33

    C. Argiroffi, F. Reale, et al., Nat. Astron. 3, 742 (2019).

    ADS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank P.V. Kaigorodov and V.I. Shematovich for valuable comments and useful discussions. The study was carried out using the equipment of the Center for Shared Use “Complex for Modeling and Data Processing of Mega-Class Research Installations” of the National Research Center “Kurchatov Institute”, http://ckp.nrcki.ru/, as well as computing facilities of the Interdepartmental Supercomputer Center of the Russian Academy of Sciences.

Funding

The authors are grateful to the Government of the Russian Federation and the Ministry of Higher Education and Science of the Russian Federation for the support (grant 075-15-2020-780 (no. 13.1902.21.0039)).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. G. Zhilkin.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhilkin, A.G., Bisikalo, D.V. & Kolymagina, E.A. MHD Model of the Interaction of a Coronal Mass Ejection with the Hot Jupiter HD 209458b. Astron. Rep. 65, 676–692 (2021). https://doi.org/10.1134/S1063772921090092

Download citation

Keywords:

  • numerical modeling
  • magnetohydrodynamics (MHD)
  • hot Jupiters
  • coronal mass ejections (CMEs)