Skip to main content
Log in

Initial Galactic Magnetic Fields and the Biermann Battery Mechanism

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract—

There are regular magnetic fields with inductions of several microgauss observed in numerous galaxies. The generation of these fields is explained by the dynamo associated with motions of the interstellar medium in appropriate objects. The growth of magnetic fields is exponential and these become stabilized when the equipartition of energy between magnetic fields and turbulent motions is reached. For starting this generation mechanism, some initial “seed” magnetic fields are necessary, and these fields are not explained within the dynamo theory. Among approaches explaining the magnetic fields in galaxies, there is the so-called Biermann battery mechanism. This mechanism relates to fluxes of protons and electrons flowing from the central portion of the object, with these fluxes being dragged by rotational motions of the medium. This results in circular currents, which are different for various particles due to their different masses. The total current becomes nonzero and generates the magnetic field. Some simple estimates of the strength of such a field were found earlier. In the present work, we have constructed a self-consistent model and derived an integral equation, which permits both to determine the order of magnitude of the initial magnetic field and to study in detail its spatial structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. T. Arshakian, R. Beck, M. Krause, and D. Sokoloff, Astron. Astrophys. 494, 21 (2009).

    Article  ADS  Google Scholar 

  2. N. G. Bochkarev, Magnetic Fields in Space (Nauka, Moscow, 2011) [in Russian].

    Google Scholar 

  3. E. Fermi, Phys. Rev. 75, 1169 (1949).

    Article  ADS  Google Scholar 

  4. V. L. Ginzburg. Propagation of Electromagnetic Waves in Plasma (Fizmatlit, Moscow, 1960; Addison Wesley, London, 1970).

  5. Ya. B. Zel’dovich, A. A. Ruzmaikin, and D. D. Sokoloff, Magnetic Fields in Astrophysics (Gordon and Breach, New York, 1983; Regulyar. Khaot. Dinamika, Moscow 2006).

  6. P. Frick, D. Sokoloff, R. Stepanov, and R. Beck, Mon. Not. R. Astron. Soc. 414, 2540 (2011).

    Article  ADS  Google Scholar 

  7. R. N. Manchester, Astrophys. J. 172, 43 (1973).

  8. R. R. Andreasyan and A. N. Makarov, Astrophysics 30, 101 (1989).

    Article  ADS  Google Scholar 

  9. J. L. Han and G. J. Qiao, Astron. Astrophys. 288, 759 (1994).

    ADS  Google Scholar 

  10. P. P. Kronberg, Nature (London, U.K.) 370, 179 (1994).

    Article  ADS  Google Scholar 

  11. H. R. Andreasyan, R. R. Andreasyan, and G. M. Pa-ronyan, Astrophysics 59, 57 (2016).

    Article  ADS  Google Scholar 

  12. R. R. Andreasyan, E. A. Mikhailov, and H. R. Andreasyan, Astron. Rep. 64, 189 (2020).

    Article  ADS  Google Scholar 

  13. N. Oppermann, H. Junklewitz, and G. Robbers, Astron. Astrophys. 542, 93 (2011).

    Article  Google Scholar 

  14. M. Hansen, W. Zhao, A. M. Frejsel, P. D. Naselsky, J. Kim, and O. V. Verkhodanov, Mon. Not. R. Astron. Soc. 426, 57 (2012).

    Article  ADS  Google Scholar 

  15. R. Beck, A. Brandenburg, D. Moss, A. Shukurov, and D. Sokoloff, Ann. Rev. Astron. Astrophys. 34, 155 (1996).

    Article  ADS  Google Scholar 

  16. M. L. Bernet, F. L. Miniati, S. J. Lilly, P. P. Kronberg, and M. Dessauges-Zavadsky, Nature (London, U.K.) 454, 302 (2008).

    Article  ADS  Google Scholar 

  17. N. Oppermann, H. Junklewitz, G. Robbers, and T. A. Ensslin, Astron. Astrophys. 530, A89 (2012).

    Article  Google Scholar 

  18. D. D. Sokoloff, Phys. Usp. 58, 601 (2015).

    Article  ADS  Google Scholar 

  19. D. Moss, Mon. Not. R. Astron. Soc. 275, 191 (1995).

    Article  ADS  Google Scholar 

  20. D. Moss and D. Sokoloff, Astron. Astrophys. Trans. 27, 139 (2012).

    Google Scholar 

  21. A. A. Ruzmaikin, D. D. Sokoloff, and A. M. Shukurov, Magnetic Fields of Galaxies (Nauka, Moscow, 1988; Springer, Netherlands, 1988).

  22. L. Biermann and A. Schluter, Phys. Rev. 82, 863 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  23. E. R. Harrison, Mon. Not. R. Astron. Soc. 147, 279 (1970).

    Article  ADS  Google Scholar 

  24. I. N. Mishustin and A. A. Ruzmaikin, Sov. Phys. JETP 34, 233 (1972).

    ADS  Google Scholar 

  25. H. Lesch, A. Crusius, R. Schlickeiser, and R. Wielebinski, Astron. Astrophys. 217, 99 (1989).

    ADS  Google Scholar 

  26. R. R. Andreasyan, Astrophysics 39, 58 (1996).

    Article  ADS  Google Scholar 

  27. E. A. Mikhailov and R. R. Andreasyan, Comm. Byurakan Astrophys. Observ. 67, 281 (2020).

    Article  ADS  Google Scholar 

  28. G. Davies and L. M. Widrow, Astrophys. J. 540, 755 (2000).

    Article  ADS  Google Scholar 

  29. G. Alfvén and G. G. Felthammar, Cosmical Electrodynamics (Clarendon, Oxford, 1963).

    MATH  Google Scholar 

  30. L. E. El’sgol’ts, Differential Equations (Nauka, Moscow, 2008; Gordon and Breach, New York, 1961).

  31. I. E. Tamm, Fundamentals of the Theory of Electricity (Fizmatlit, Moscow, 2003; Mir, Moscow, 1979).

  32. A. B. Vasil’eva and A. N. Tikhonov, Integral Equations (Lan’, Moscow, 2004) [in Russian].

  33. V. T. Volkov and A. G. Yagola, Integral Equations and Calculus of Variations (Mosk. Gos. Univ., Moscow, 2008) [in Russian].

    Google Scholar 

  34. A. N. Tikhonov, A. V. Goncharskii, V. V. Stepanov, and A. G. Yagola, Numerical Methods for the Solution of Ill-Posed Problems (Nauka, Moscow, 1990; Kluwer, Dordrecht, 1995).

  35. G. J. Ferland and H. Netzer, Astrophys. J. 264, 105 (1983).

    Article  ADS  Google Scholar 

  36. W. Forman, C. Jones, and W. Tucker, Astrophys. J. 293, 102 (1985).

    Article  ADS  Google Scholar 

  37. R. E. Pudritz and J. Silk, Astrophys. J. 342, 650 (1989).

    Article  ADS  Google Scholar 

  38. H. Xu, B. W. O’Shea, D. C. Collins, M. L. Norman, H. Li, and S. Li, Astrophys. J. 688, L57 (2008).

    Article  ADS  Google Scholar 

  39. L. F. S. Rodrigues, L. Chamandy, A. Shukurov, C. M. Baugh, and A. R. Taylor, Mon. Not. R. Astron. Soc. 483, 2424 (2019).

    Article  ADS  Google Scholar 

  40. M. V. Medvedev, L. O. Silva, M. Fiore, R. A. Fonseca, and W. B. Mori, J. Korean Astron. Soc. 37, 533 (2004).

    Article  ADS  Google Scholar 

  41. K. Takahashi, K. Ichiki, H. Ohno, H. Hanayama, and N. Sugiyama, Astron. Nachr. 327, 410 (2006).

    Article  ADS  Google Scholar 

  42. D. Moss, D. Sokoloff, and V. Suleimanov, Astron. Astrophys. 588, A18 (2016).

    Article  ADS  Google Scholar 

  43. D. Boneva, E. Mikhailov, and M. Pashentseva, in Proceedings of the 15th International Conference on Space, Ecology, Safety SES-2019, November 6–8, 2019 (Space Res. Technol. Inst. Bulg. Acad. Sci., Sofia, Bulgaria, 2019), p. 57.

Download references

ACKNOWLEDGMENTS

The authors are grateful to the anonymous referee for attention paid to our work and for helpful remarks, which have resulted in a number of improvements.

Funding

The work is partially supported by Russian Ministry of Science and Higher Education, (agreement No. 075-15-2019-1621).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Mikhailov.

Additional information

Translated by V. Badin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailov, E.A., Andreasyan, R.R. Initial Galactic Magnetic Fields and the Biermann Battery Mechanism. Astron. Rep. 65, 715–722 (2021). https://doi.org/10.1134/S1063772921090055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921090055

Keywords:

Navigation