Skip to main content
Log in

Simulations of the Isothermal Collapse of Magnetic Rotating Protostellar Clouds

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

We investigate the collapse of magnetic protostellar clouds of mass 10 and \(1\;{{M}_{ \odot }}\). The collapse is simulated numerically using the two-dimensional magneto-gas-dynamic (MHD) code “Enlil.” The simulations show that protostellar clouds acquire a hierarchical structure by the end of the isothermal stage of collapse. Under the action of the electromagnetic force, the protostellar cloud takes the form of an oblate envelope with the half-thickness to radius ratio \(Z{\text{/}}R \sim 0.20{-} 0.95\). A geometrically and optically thin primary disk with radius \((0.2{-} 0.7){{R}_{0}}\) and \(Z{\text{/}}R\) ~ (10–2–10–1) forms inside the envelope, where \({{R}_{0}}\) is the initial radius of the cloud. Primary disks are the structures in magnetostatic equilibrium. They form when the initial magnetic energy of the cloud exceeds 20% of its gravitational energy. The mass of the primary disk is 30–80% of the initial mass of the cloud. The first hydrostatic core subsequently forms in the center of the primary disc. We discuss the role of primary disks in the further evolution of clouds, as well as possible observational appearance of the internal hierarchy of the collapsing cloud from the point of view of the features of the magnetic field geometry and the distribution of angular momentum at different levels of the hierarchy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. L. Enoch, S. Corder, G. Duchêne, D. C. Bock, et al., Astrophys. J. Suppl. 195, 21 (2011).

    Article  Google Scholar 

  2. P. S. Teixeira, C. J. Lada, and J. F. Alves, Astrophys. J. 629, 276 (2005).

    Article  ADS  Google Scholar 

  3. R. Launhardt, A. M. Stutz, A. Schmiedeke, T. Henning, et al., Astron. Astrophys. 551, A98 (2013).

    Article  Google Scholar 

  4. S. I. Sadavoy, E. Keto, T. L. Bourke, M. M. Dunham, et al., Astrophys. J. 852, 102 (2018).

    Article  ADS  Google Scholar 

  5. M. Tang, T. Liu, S.-L. Qin, K.-T. Kim, et al., Astrophys. J. 856, 141 (2018).

    Article  ADS  Google Scholar 

  6. P. Caselli, P. J. Benson, P. C. Myers, and M. Tafalla, Astrophys. J. 572, 238 (2002).

    Article  ADS  Google Scholar 

  7. A. Punanova, P. Caselli, J. E. Pineda, A. Pon, M. Tafalla, A. Hacar, and L. Bizzocchi, Astron. Astrophys. 617, A27 (2018).

    Article  ADS  Google Scholar 

  8. R. M. Crutcher, Ann. Rev. Astron. Astrophys. 50, 29 (2012).

    Article  ADS  Google Scholar 

  9. M. Galametz, A. Maury, J. M. Girart, R. Rao, et al., Astron. Astrophys. 616, A139 (2018).

    Article  Google Scholar 

  10. H.-B. Li, C. D. Dowell, A. Goodman, R. Hildebrand, and G. Novak, Astrophys. J. 704, 891 (2009).

    Article  ADS  Google Scholar 

  11. T. H. Troland and R. M. Crutcher, Astrophys. J. 680, 457 (2008).

    Article  ADS  Google Scholar 

  12. P. Andre, D. Ward-Thompson, and M. Barsony, Astrophys. J. 406, 122 (1993).

    Article  ADS  Google Scholar 

  13. C.-F. Lee, N. Hirano, Q. Zhang, H. Shang, P. T. R. Ho, and R. Krasnopolsky, Astrophys. J. 786, 114 (2014).

    Article  ADS  Google Scholar 

  14. L. W. Looney, J. J. Tobin, and W. Kwon, Astrophys. J. 670, L131 (2007).

    Article  ADS  Google Scholar 

  15. N. Ohashi, M. Hayashi, P. T. P. Ho, and M. Momose, Astrophys. J. 475, 211 (1997).

    Article  ADS  Google Scholar 

  16. J. J. Tobin, L. Hartmann, L. W. Looney, and H.-F. Chiang, Astrophys. J. 712, 1010 (2010).

    Article  ADS  Google Scholar 

  17. G. J. Wiseman, A. Wootten, H. Zinnecker, and M. McCaughrean, Astrophys. J. 550, L87 (2001).

    Article  ADS  Google Scholar 

  18. M. Gaudel, A. J. Maury, A. Belloche, S. Maret, et al., Astron. Astrophys. 637, A92 (2020).

    Article  Google Scholar 

  19. C.-F. Lee, W. Kwon, K.-S. Jhan, N. Hirano, et al., Astrophys. J. 879, 101 (2019).

    Article  ADS  Google Scholar 

  20. J. J. Tobin, L. Hartmann, H.-F. Chiang, D. J. Wilner, L. W. Looney, L. Loinard, N. Calvet, and P. D’Alessio, Nature (London, U.K.) 492, 83 (2012).

    Article  ADS  Google Scholar 

  21. J. K. Jørgensen, E. F. van Dishoeck, R. Visser, T. L. Bourke, D. J. Wilner, D. Lommen, M. R. Hogerheijde, and P. C. Myers, Astron. Astrophys. 507, 861 (2009).

    Article  ADS  Google Scholar 

  22. S. Maret, A. J. Maury, A. Belloche, M. Gaudel, et al., Astron. Astrophys. 635, A15 (2020).

    Article  Google Scholar 

  23. J. J. Tobin, P. D. Sheehan, S. T. Megeath, A. K. Diaz-Rodriguez, et al., Astrophys. J. 890, 130 (2020).

    Article  ADS  Google Scholar 

  24. J. E. Lindberg, J. K. Jørgensen, C. Brinch, T. Haugbolle, et al., Astron. Astrophys. 566, A74 (2014).

    Article  Google Scholar 

  25. N. M. Murillo and S.-P. Lai, Astrophys. J. Lett. 764, L15 (2013).

    Article  ADS  Google Scholar 

  26. H. H.-W. Yen, P. M. Koch, S. Takakuwa, R. Krasnopolsky, N. Ohashi, and Y. Aso, Astrophys. J. 834, 178 (2017).

    Article  ADS  Google Scholar 

  27. C. L. H. Hull, R. L. Plambeck, W. Kwon, G. C. Bower, et al., Astrophys. J. Suppl. 213, 13 (2014).

    Article  Google Scholar 

  28. J. M. Girart, R. Rao, and D. P. Marrone, Science (Washington, DC, U. S.) 313, 812 (2006).

    Article  ADS  Google Scholar 

  29. J. A. Davidson, G. Novak, T. G. Matthews, B. Matthews, et al., Astrophys. J. 732, 97 (2011).

    Article  ADS  Google Scholar 

  30. N. L. Chapman, J. A. Davidson, P. F. Goldsmith, M. Houde, et al., Astrophys. J. 770, 151 (2013).

    Article  ADS  Google Scholar 

  31. D. C. Black and E. H. Scott, Astrophys. J. 263, 696 (1982).

    Article  ADS  Google Scholar 

  32. T. Nakano, Publ. Astron. Soc. Pacif. 31, 697 (1979).

    ADS  Google Scholar 

  33. D. Galli and F. H. Shu, Astrophys. J. 417, 220 (1993).

    Article  ADS  Google Scholar 

  34. P. Hennebelle and A. Ciardi, Astron. Astrophys. 506, L29 (2009).

    Article  ADS  Google Scholar 

  35. K. H. Lam, Z.-Y. Li, C.-Y. Chen, K. Tomida, and B. Zhao, Mon. Not. R. Astron. Soc. 489, 5326 (2019).

    Article  ADS  Google Scholar 

  36. K. Tomisaka, Astrophys. J. 575, 306 (2002).

    Article  ADS  Google Scholar 

  37. F Y. Tsukamoto, S. Okuzumi, K. Iwasaki, M. N. Machida, and S.-I. Inutsuka, Publ. Astron. Soc. Pacif. 69, 95 (2017).

    ADS  Google Scholar 

  38. B. Zhao, P. Caselli, Z.-Y. Li, and R. Krasnopolsky, Mon. Not. R. Astron. Soc. 473, 4868 (2018).

    Article  ADS  Google Scholar 

  39. D. Galli, S. Lizano, F. H. Shu, and A. Allen, Astrophys. J. 647, 374 (2006).

    Article  ADS  Google Scholar 

  40. B. Zhao, K. Tomida, P. Hennebelle, J. J. Tobin, et al., Solar Syst. Res. 216, 43 (2020).

    Google Scholar 

  41. A. E. Dudorov, A. G. Zhilkin, and O. A. Kuznetsov, Mat. Model. 11, 110 (1999).

    Google Scholar 

  42. A. E. Dudorov, A. G. Zhilkin, N. Y. Lazareva, and O. A. Kuznetsov, Astron. Astrophys. Trans. 19, 515 (2000).

    Article  ADS  Google Scholar 

  43. A. E. Dudorov and Yu. V. Sazonov, Nauch. Inform. 50, 98 (1982).

    ADS  Google Scholar 

  44. T. Nakano, R. Nishi, and T. Umebayashi, Astrophys. J. 573, 199 (2002).

    Article  ADS  Google Scholar 

  45. Q A. G. Zhilkin, Y. N. Pavlyuchenkov, and S. N. Zamozdra, Astron. Rep. 53, 590 (2009).

    Article  ADS  Google Scholar 

  46. A. E. Dudorov, A. G. Zhilkin, and O. A. Kuznetsov, in Numerical Astrophysics, Proceedings of the International Conference on Numerical Astrophysics 1998 (NAP98), Tokyo, Japan, March 10–13, 1998, Ed. by S. M. Miyama, K. Tomisaka, and T. Hanawa, Astrophys. Space Sci. Libr. 240, 389 (1999).

  47. A. E. Dudorov, A. G. Zhilkin, and O. A. Kuznetsov, Mat. Model. 11, 101 (1999).

    MathSciNet  Google Scholar 

  48. D. Semenov, T. Henning, C. Helling, M. Ilgner, and E. Sedlmayr, Astron. Astrophys. 410, 611 (2003).

    Article  ADS  Google Scholar 

  49. A. E. Dudorov and A. G. Zhilkin, Sov. J. Exp. Theor. Phys. 96, 165 (2003).

    Article  ADS  Google Scholar 

  50. R. B. Larson, Mon. Not. R. Astron. Soc. 145, 271 (1969).

    Article  ADS  Google Scholar 

  51. E. H. Scott and D. C. Black, Astrophys. J. 239, 166 (1980).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the referee for the evaluation of the work and useful comments.

Funding

The work of S.A. Khaibrakhmanov in Section 6 was supported by the Russian Foundation for Basic Research (project 18-52-52006). The work of A.E. Dudorov in Section 3 was supported by the Russian Foundation for Basic Research (project 18-02-01067). The work of N.S. Kar-galtseva in Section 5 was supported by the Russian Science Foundation (project 19-72-10012). A.G. Zhilkin’s work in Section 2 was supported by the Government of the Russian Federation and the Ministry of Higher Education and Science of the Russian Federation, grant 075-15-2020-780 (N13.1902.21.0039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Khaibrakhmanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khaibrakhmanov, S.A., Dudorov, A.E., Kargaltseva, N.S. et al. Simulations of the Isothermal Collapse of Magnetic Rotating Protostellar Clouds. Astron. Rep. 65, 693–704 (2021). https://doi.org/10.1134/S1063772921090043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921090043

Keywords:

Navigation