Skip to main content
Log in

Analysis of Photoelectric Occultations and Development of a Digital Model of the Lunar Libration Zone

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

One of the priority tasks of modern astronomy is the observation and study of transient celestial processes, which also concerns photoelectric observations of lunar occultations of stars. These measurements provide unique and important material both for determining the star diameters from a diffraction curve analysis regarding the change in the brightness of the star occulted by the Moon and for developing a model of the lunar libration zone. This paper is focused on building a digital model of isohypses (DMI) characterizing the position of 40 000 selenocentric radius vectors depending on the position of the lunar limb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. mas is milli arc second.

  2. https://occultations.org

REFERENCES

  1. V. Kornilov, A. Mironov, E. Trunkovskii, Kh. Khaliullin, and A. Cherepashchuk, Sov. Astron. 28, 431 (1984).

    ADS  Google Scholar 

  2. L. V. Morrison, in Highlights of Astronomy, Ed. by C. de Jager (Springer, Dordrech, 1971), Vol. 2, p. 589.

  3. L. V. Morrison, IAU Symp. 47, 395 (1972).

  4. E. Pitjeva and N. Pitjev, Celest. Mech. Dyn. Astron. 119, 237 (2014).

    Article  ADS  Google Scholar 

  5. L. Morrison and G. Appleby, Mon. Not. R. Astron. Soc. 196, 1005 (1981).

    Article  ADS  Google Scholar 

  6. C. Watts, Astron. Papers Am. Ephem. 17, 1 (1963).

    Google Scholar 

  7. L. Morrison and G. Appleby, Mon. Not. R. Astron. Soc. 196, 1013 (1981).

    Article  ADS  Google Scholar 

  8. Y. Nefedyev, S. Valeev, R. Mikeev, A. Andreev, and N. Varaksina, Adv. Space Res. 50, 1564 (2012).

    Article  ADS  Google Scholar 

  9. N. Varaksina, Y. Nefedyev, K. Churkin, R. Zabbarova, and S. Demin, J. Phys.: Conf. Ser. 661, 012014 (2015).

    Google Scholar 

  10. D. L. Turcotte, J. Geophys. Res. Solid Earth 92, E597 (1987).

    Article  ADS  Google Scholar 

  11. N. G. Rizvanov, Y. A. Nefed’ev, and M. I. Kibardina, Solar System Res. 41, 140 (2007).

    Article  ADS  Google Scholar 

  12. S. Demin, O. Y. Panischev, and Y. A. Nefedyev, Kinem. Phys. Celest. Bodies 30, 63 (2014).

    Article  ADS  Google Scholar 

  13. S. Demin, O. Y. Panischev, and Y. A. Nefedyev, Nonlin. Phen. Complex Syst. 18, 63 (2015).

    Google Scholar 

  14. S. Demin, O. Y. Panischev, and Y. A. Nefedyev, J. Phys.: Conf. Ser. 661, 012003 (2015).

    Google Scholar 

  15. N. Rizvanov and J. Nefedjev, Astron. Astrophys. 444, 625 (2005).

    Article  ADS  Google Scholar 

  16. T. Stepinski, M. Collier, P. McGovern, and S. Clifford, J. Geophys. Res. Planets 109, 2005 (2004).

    Article  ADS  Google Scholar 

  17. H.-O. Peitgen, H. Jürgens, and D. Saupe, Chaos and Fractals: New Frontiers of Science (Springer Science, New York, 2006).

    MATH  Google Scholar 

  18. K. Churkin, A. Andreev, Y. A. Nefedyev, N. Petrova, and N. Y. Demina, Astron. Rep. 62, 1042 (2018).

    Article  ADS  Google Scholar 

  19. K. Churkin, A. Andreev, Y. Nefedyev, R. Mubarakshina, and V. Borovskih, J. Phys.: Conf. Ser. 1400, 022044 (2019).

    Google Scholar 

  20. L. Morrison, R. Greenwich Observ. Bull. 183, 5 (1978).

    Google Scholar 

  21. N. Petrova, Y. A. Nefedyev, A. Zagidullin, and A. Andreev, Astron. Rep. 62, 1021 (2018).

    Article  ADS  Google Scholar 

  22. Y. A. Nefedyev, A. Andreev, N. Petrova, N. Y. Demina, and A. Zagidullin, Astron. Rep. 62, 1016 (2018).

    Article  ADS  Google Scholar 

  23. Y. A. Nefedjev and N. Rizvanov, Astron. Nachr. 323, 135 (2002).

    Article  ADS  Google Scholar 

  24. M. Sôma, Celest. Mech. 35, 45 (1985).

    Article  ADS  Google Scholar 

  25. A. O. Andreev, Yu. A. Nefedyev, L. A. Nefediev, E. N. Ahmedshina, N. Yu. Demina, and A. A. Zagidullin, Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 162, 223 (2020).

    Google Scholar 

  26. A. Zagidullin, V. Usanin, N. Petrova, Y. A. Nefedyev, A. Andreev, and T. Gudkova, Astron. Rep. 64, 1093 (2020).

    Article  ADS  Google Scholar 

  27. Yu. A. Nefedyev, A. O. Andreev, and N. Yu. Demina, Uch. Zap. Kazan. Univ., Ser. Fiz.-Mat. Nauki 162, 481 (2020).

    Google Scholar 

  28. A. Andreev, Y. Nefedyev, L. Nefediev, N. Demina, A. Bagrov, N. Petrova, and A. Zagidullin, J. Phys.: Conf. Ser. 1697, 012016 (2020).

    Google Scholar 

  29. K. Churkin, A. Andreev, Y. Nefedyev, L. Nefediev, R. Hudec, A. Bagrov, and N. Demina, J. Phys.: Conf. Ser. 1697, 012024 (2020).

    Google Scholar 

  30. A. Andreev, Y. A. Nefedyev, N. Y. Demina, L. Nefediev, N. Petrova, and A. Zagidullin, Astron. Rep. 64, 795 (2020).

    Article  ADS  Google Scholar 

  31. A. Zagidullin, V. Usanin, N. Petrova, Y. Nefedyev, and A. Andreev, J. Phys.: Conf. Ser. 1697, 012018 (2020).

    Google Scholar 

  32. E. Kostina, A. Andreev, Y. Nefedyev, and N. Demina, J. Phys.: Conf. Ser. 1697, 012033 (2020).

    Google Scholar 

  33. N. Petrova, Y. A. Nefedyev, A. Andreev, and A. Zagidullin, Astron. Rep. 64, 1078 (2020).

    Article  ADS  Google Scholar 

  34. K. Churkin, A. Andreev, Y. Nefedyev, R. Mubarakshina, and V. Borovskih, J. Phys.: Conf. Ser. 1400, 022044 (2019).

    Google Scholar 

  35. R. S. Park, W. M. Folkner, J. G. Williams, and D. H. Boggs, Astron. J. 161, 105 (2021).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 20-12-00105 (the data analysis method and numerical calculations). This work was also supported in part by the Strategic Academic Leadership Program of Kazan Federal University; the Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, project no. 0137-2021-0004; the Russian Foundation for Basic Research, project no. 19-32-90024 and the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Nefedyev.

Additional information

Translated by A. Kobkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Churkin, K.O., Nefedyev, Y.A., Andreev, A.O. et al. Analysis of Photoelectric Occultations and Development of a Digital Model of the Lunar Libration Zone. Astron. Rep. 65, 580–587 (2021). https://doi.org/10.1134/S1063772921080035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921080035

Keywords:

Navigation