Skip to main content
Log in

On the Influence of Angular Momentum and Dynamical Friction on Structure Formation. II. Turn-Around and Structure Mass

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

In this paper, we use the solution of the collapse model presented in a previous paper by Del Popolo to obtain more precise estimates on the turn-around radius (TAR) (namely the radius at which the expansion is divided into the region of recollapse from the material continuing its motion following the Hubble flow), R0 (note that in this paper TAR or R0 represent the turn-around radius, as specified in the previous footnote), and structure mass, M, of the Local Group, M81, NGC 253, IC 342, Cen A/M83, and to the Virgo clusters. To this aim, similarly to Peirani and Pacheco, we found a relationship between the velocity, \({v}\), and radius, R, depending on the Hubble parameter, and structure mass, M, and fitted them to data of the Local Group, M81, NGC 253, IC 342, Cen A/M83, and to the Virgo clusters obtained by Peirani and Pacheco. In this way, we obtained optimized values of the mass, the Hubble constant, and R0, of the objects studied. Similarly to the quoted Del Popolo’s paper, the Lemaitre–Tolman model took into account the cosmological constant, angular momentum and dynamical friction. The fit gives values of the masses 30–40% larger than the \({v}\)R relationship obtained from the standard Lemaitre–Tolman (LT) model (not taking account nor cosmological constant, angular momentum, or dynamical friction). Differently from mass, the Hubble parameter becomes smaller with respect to the LT model, when angular momentum, and dynamical friction are introduced. This is in agreement with Peirani and Pacheco, who improved the standard Lemaitre–Tolman model taking into account the cosmological constant. After determining, the optimized values of the TAR, R0, and mass, M, of the studied objects, we put constraints to the dark energy equation of state parameter, w.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. In that paper α = 1.1 ± 0.3.

  2. I recall that in cosmology, the equation of state of a perfect fluid is characterized by a dimensionless number w equal to the ratio of its pressure, p, and its energy density, ρ, that is w = p/ρ.

REFERENCES

  1. A. Del Popolo, Astron. Rep. 51, 169 (2007); arXiv: 0801.1091 [astro-ph].

    Article  ADS  Google Scholar 

  2. A. Del Popolo, AIP Conf. Proc. 1548, 2 (2013).

    Article  ADS  Google Scholar 

  3. A. Del Popolo, Int. J. Mod. Phys. D 23, 30005 (2014); arXiv: 1305.0456 [astroph.CO].

    Article  MathSciNet  ADS  Google Scholar 

  4. A. Del Popolo, M. Le Delliou, and X. Lee, Galaxies 6 (3), 67 (2018).

    Article  ADS  Google Scholar 

  5. P. Bull, Y. Akrami, J. Adamek, T. Baker, et al., Phys. Dark Universe 12, 56 (2016); arXiv: 1512.05356 [astro-ph.CO].

  6. A. Del Popolo, M. Le Delliou, and X. Lee, Phys. Dark Universe 26, 100342 (2019); arXiv:1808.02136 [astro-ph. CO].

  7. D. N. Spergel, L. Verde, H. V. Peiris, E. Komatsu, et al., Astrophys. J. Suppl. 148, 175 (2003); arXiv: astro-ph/0302209.

    Article  Google Scholar 

  8. E. Komatsu, K. M. Smith, J. Dunkley, C. L. Bennett, et al., Astrophys. J. Suppl. 192, 18 (2011).

    Article  Google Scholar 

  9. B. Moore, T. Quinn, F. Governato, J. Stadel, and G. Lake, Mon. Not. R. Astron. Soc. 310, 1147 (1999); arXiv: astro-ph/9903164.

    Article  ADS  Google Scholar 

  10. W. J. G. de Blok, Adv. Astron. 2010, 789293 (2010); arXiv: 0910.3538 [astro-ph.CO].

    Article  ADS  Google Scholar 

  11. J. P. Ostriker and P. Steinhardt, Science (Washington, DC, U. S.) 300, 1909 (2003); arXiv: astro-ph/0306402.

  12. M. Boylan-Kolchin, J. S. Bullock, and M. Kaplinghat, Mon. Not. R. Astron. Soc. 415, L40 (2011); arXiv: 1103.0007 [astro-ph.CO].

    Article  ADS  Google Scholar 

  13. V. F. Cardone, M. P. Leubner, and A. Del Popolo, Mon. Not. R. Astron. Soc. 414, 2265 (2011); arXiv: 1102.3319 [astro-ph.CO].

    Article  ADS  Google Scholar 

  14. V. F. Cardone, A. Del Popolo, C. Tortora, and N. R. Napolitano, Mon. Not. R. Astron. Soc. 416, 1822 (2011); arXiv: 1106.0364 [astro-ph.CO].

    Article  ADS  Google Scholar 

  15. A. Del Popolo, Astron. J. 131, 2367 (2006); arXiv: astro-ph/0609101.

    Article  ADS  Google Scholar 

  16. A. Del Popolo, Astron. Astrophys. 454, 17 (2006); arXiv: 0801.1086 [astro-ph].

    Article  ADS  Google Scholar 

  17. D. C. Rodrigues, A. Del Popolo, V. Marra, and P. L. C. de Oliveira, Mon. Not. R. Astron. Soc. 470, 2410 (2017); arXiv: 1701.02698 [astro-ph.GA].

  18. J. A. S. Lima, A. Del Popolo, and A. R. Plastino, Phys. Rev. D 100, 104042 (2019); arXiv: 1911.09060 [gr-qc].

  19. A. Del Popolo, F. Pace, and D. F. Mota, Phys. Rev. D 100, 024013 (2019); arXiv: 1908.07322[astro-ph.CO].

  20. A. Del Popolo and N. Hiotelis, J. Cosmol. Astropart. Phys., No. 1, 047 (2014); arXiv: 1401.6577 [astro-ph.GA].

  21. A. Del Popolo and M. Le Delliou, J. Cosmol. Astropart. Phys., No. 12, 051 (2014); arXiv: 1408.4893 [astro-ph.CO].

  22. A. Del Popolo and M. Le Delliou, Galaxies 5, 17 (2017); arXiv: 1606.07790 [astro-ph.CO].

  23. M. Raveri, Phys. Rev. D 93, 043522 (2016); arXiv: 1510.00688 [astro-ph.CO].

  24. A. V. Astashenok and A. Del Popolo, Class. Quantum Grav. 29, 085014 (2012); arXiv: 1203.2290 [gr-qc].

  25. H. E. S. Velten, R. F. vom Marttens, and W. Zimdahl, Eur. Phys. J. C 74, 3160 (2014); arXiv: 1410.2509 [astro-ph.CO].

    Article  ADS  Google Scholar 

  26. S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).

    Article  ADS  Google Scholar 

  27. A. Del Popolo, Astrophys. J. 637, 12 (2006); arXiv: astro-ph/0609100.

    Article  ADS  Google Scholar 

  28. A. Del Popolo, Mon. Not. R. Astron. Soc. 419, 971 (2012); arXiv: 1105.0090 [astroph.CO].

    Article  ADS  Google Scholar 

  29. A. Del Popolo, Mon. Not. R. Astron. Soc. 424, 38 (2012); arXiv: 1204.4439 [astro-ph.CO].

    Article  ADS  Google Scholar 

  30. A. Del Popolo, F. Pace, M. Le Delliou, and X. Lee, Phys. Rev. D 98, 063517 (2018); arXiv: 1809.10609 [astro-ph.GA].

  31. Del Popolo, Astron. Rep. (2020, in press).

  32. J. P. Huchra and M. J. Geller, Astrophys. J. 257, 423 (1982).

    Article  ADS  Google Scholar 

  33. I. Karachentsev, Astron. J. 129, 178 (2005); arXiv: astro-ph/0410065.

    Article  ADS  Google Scholar 

  34. D. Lynden-Bell, Observatory 101, 111 (1981).

    ADS  Google Scholar 

  35. A. Sandage, Astrophys. J. 307, 1 (1986).

    Article  ADS  Google Scholar 

  36. G. Lemaître, Ann. Soc. Sci. Bruxelles 53, 51 (1933).

    Google Scholar 

  37. R. C. Tolman, Proc. Natl. Acad. Sci. U. S. A. 20, 169 (1934).

    Article  ADS  Google Scholar 

  38. G. L. Hoffman, D. W. Olson, and E. E. Salpeter, Astrophys. J. 242, 861 (1980).

    Article  ADS  Google Scholar 

  39. R. B. Tully and E. J. Shaya, Astrophys. J. 281, 31 (1984).

    Article  ADS  Google Scholar 

  40. P. Teerikorpi, L. Bottinelli, L. Gouguenheim, and G. Paturel, Astron. Astrophys. 260, 17 (1992).

    ADS  Google Scholar 

  41. S. Peirani and J. A. de Freitas Pacheco, New Astron. 11, 325 (2006); arXiv: astro-ph/0508614 [astro-ph].

    Article  ADS  Google Scholar 

  42. S. Peirani and J. A. de Freitas Pacheco, Astron. Astrophys. 488, 845 (2008); arXiv: 0806.4245 [astro-ph].

    Article  ADS  Google Scholar 

  43. R. C. C. Lopes, R. Voivodic, L. R. Abramo, and L. Sodré, Jr., J. Cosmol. Astropart. Phys., No. 09, 010 (2018); arXiv: 1805.09918 [astro-ph.CO].

  44. V. Pavlidou and T. N. Tomaras, J. Cosmol. Astropart. Phys., No. 09, 020 (2014); arXiv: 1310.1920 [astro-ph.CO].

  45. V. Pavlidou, N. Tetradis, and T. N. Tomaras, J. Cosmol. Astropart. Phys., No. 05, 017 (2014); arXiv: 1401.3742 [astro-ph.CO].

  46. V. Faraoni, M. Lapierre-Léonard, and A. Prain, J. Cosmol. Astropart. Phys., No. 10, 013 (2015); arXiv: 1508.01725 [gr-qc].

  47. S. Bhattacharya, K. F. Dialektopoulos, A. Enea Romano, C. Skordis, and T. N. Tomaras, J. Cosmol. Astropart. Phys., No. 07, 018 (2017); arXiv:1611.05055 [astro-ph.CO].

  48. R. C. C. Lopes, R. Voivodic, L. R. Abramo, and L. Sodré, Jr., J. Cosmol. Astropart. Phys., No. 07, 026 (2019); arXiv: 1809.10321 [astro-ph.CO].

  49. A. Del Popolo, F. Pace, and J. A. S. Lima, Int. J. Mod. Phys. D 22, 1350038 (2013); arXiv: 1207.5789 [astro-ph.CO].

    Article  ADS  Google Scholar 

  50. A. Del Popolo, F. Pace, and J. A. S. Lima, Mon. Not. R. Astron. Soc. 430, 628 (2013); arXiv: 1212.5092 [astro-ph.CO].

    Article  ADS  Google Scholar 

  51. F. Pace, R. C. Batista, and A. Del Popolo, Mon. Not. R. Astron. Soc. 445, 648 (2014); arXiv: 1406.1448 [astro-ph.CO].

    Article  ADS  Google Scholar 

  52. A. Mehrabi, F. Pace, M. Malekjani, and A. Del Popolo, Mon. Not. R. Astron. Soc. 465, 2687 (2017); arXiv: 1608.07961 [astro-ph.CO].

  53. D. C. Rodrigues, V. Marra, A. del Popolo, and Z. Davari, Nat. Astron. 2, 668 (2018); arXiv: 1806.06803 [astro-ph.GA].

  54. F. Pace, C. Schimd, D. F. Mota, and A. D. Popolo, J. Cosmol. Astropart. Phys., No. 09, 060 (2019).

  55. A. Del Popolo and M. Gambera, Astron. Astrophys. 337, 96 (1998); arXiv: astro-ph/9802214.

    ADS  Google Scholar 

  56. A. Del Popolo and M. Gambera, Astron. Astrophys. 344, 17 (1999); arXiv: astro-ph/9806044.

    ADS  Google Scholar 

  57. A. Del Popolo and M. Gambera, Astron. Astrophys. 357, 809 (2000); arXiv: astro-ph/9909156.

    ADS  Google Scholar 

  58. A. Del Popolo, E. N. Ercan, and Z. Xia, Astron. J. 122, 487 (2001); arXiv: astro-ph/0108080.

    Article  ADS  Google Scholar 

  59. A. Del Popolo, Astron. Astrophys. 387, 759 (2002); arXiv: astro-ph/0202436.

    Article  ADS  Google Scholar 

  60. A. Del Popolo, Mon. Not. R. Astron. Soc. 336, 81 (2002); arXiv: astro-ph/0205449.

    Article  ADS  Google Scholar 

  61. A. Del Popolo, N. Hiotelis, and J. Peñarrubia, Astrophys. J. 628, 76 (2005); arXiv: astro-ph/0508596 [astro-ph].

    Article  ADS  Google Scholar 

  62. P. J. E. Peebles, Astrophys. J. 365, 27 (1990).

    Article  ADS  Google Scholar 

  63. E. Audit, R. Teyssier, and J.-M. Alimi, Astron. Astrophys. 325, 439 (1997); arXiv: astro-ph/9704023.

    ADS  Google Scholar 

  64. A. Del Popolo, M. Deliyergiyev, M. Le Delliou, L. Tolos, and F. Burgio, Phys. Dark Universe 28, 100484 (2020); arXiv: 1904.13060 [gr-qc].

  65. Y. Zhou, A. Del Popolo, and Z. Chang, Phys. Dark Universe 28, 100468 (2020).

    Article  Google Scholar 

  66. M. H. Chan and A. Del Popolo, Mon. Not. R. Astron. Soc. 492, 5865 (2020); arXiv: 2001.06141 [astro-ph.GA].

  67. A. Del Popolo, M. Deliyergiyev, and M. Le Delliou, Phys. Dark Universe 30, 100622 (2020).

    Article  Google Scholar 

  68. A. Del Popolo, M. Deliyergiyev, M. Le Delliou, L. Tolos, and F. Burgio, Phys. Dark Universe 28, 100484 (2020); arXiv: 1904.13060 [gr-qc].

  69. F. Pace, R. C. Batista, and A. Del Popolo, Mon. Not. R. Astron. Soc. 445, 648 (2014); arXiv: 1406.1448 [astro-ph.CO].

    Article  ADS  Google Scholar 

  70. A. Del Popolo, F. Pace, S. P. Maydanyuk, J. A. S. Lima, and J. F. Jesus, Phys. Rev. D 87, 043527 (2013); arXiv: 1303.3628 [astro-ph.CO].

    Article  ADS  Google Scholar 

  71. A. Del Popolo, M. Gambera, and V. Antonuccio-Delogu, Astron. Astrophys. Trans. 16, 127 (1998).

    Article  ADS  Google Scholar 

  72. A. Del Popolo, Astrophys. J. 698, 2093 (2009); arXiv: 0906.4447 [astro-ph.CO].

    Article  ADS  Google Scholar 

  73. A. Del Popolo, Astron. Astrophys. 448, 439 (2006).

    Article  ADS  Google Scholar 

  74. A. Del Popolo and F. Pace, Astrophys. Space Sci. 361, 162 (2016); arXiv:1502.01947 [astro-ph.GA].

  75. A. Del Popolo, Mon. Not. R. Astron. Soc. 408, 1808 (2010); arXiv: 1012.4322 [astro-ph.CO].

    Article  ADS  Google Scholar 

  76. A. Del Popolo, J. Cosmol. Astropart. Phys., No. 07, 014 (2011), arXiv:1112.4185[astro-ph. CO].

  77. A. Del Popolo and V. F. Cardone, Mon. Not. R. Astron. Soc. 423, 1060 (2012); arXiv: 1203.3377 [astro-ph.CO].

    Article  ADS  Google Scholar 

  78. A. Del Popolo, F. Pace, and M. Le Delliou, J. Cosmol. Astropart. Phys., No. 03, 032 (2017); arXiv: 1703.06918.

  79. A. Del Popolo, M. H. Chan, and D. F. Mota, Phys. Rev. D 101, 083505 (2020).

    Article  MathSciNet  ADS  Google Scholar 

  80. J. E. Gunn and J. R. Gott III, Astrophys. J. 176, 1 (1972).

    Article  ADS  Google Scholar 

  81. P. J. E. Peebles, Astrophys. J. 155, 393 (1969).

    Article  ADS  Google Scholar 

  82. S. D. M. White, Astrophys. J. 286, 38 (1984).

    Article  ADS  Google Scholar 

  83. B. S. Ryden and J. E. Gunn, Astrophys. J. 318, 15 (1987).

    Article  ADS  Google Scholar 

  84. B. S. Ryden, Astrophys. J. 329, 589 (1988).

    Article  ADS  Google Scholar 

  85. L. L. R. Williams, A. Babul, and J. J. Dalcanton, Astrophys. J. 604, 18 (2004); arXiv: astro-ph/0312002.

    Article  ADS  Google Scholar 

  86. V. Antonuccio-Delogu and S. Colafrancesco, Astrophys. J. 427, 72 (1994).

    Article  ADS  Google Scholar 

  87. J. A. Fillmore and P. Goldreich, Astrophys. J. 281, 1 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  88. E. Bertschinger, Astrophys. J. Suppl. 58, 39 (1985).

    Article  Google Scholar 

  89. Y. Hoffman and J. Shaham, Astrophys. J. 297, 16 (1985).

    Article  ADS  Google Scholar 

  90. K. Subramanian, R. Cen, and J. P. Ostriker, Astrophys. J. 538, 528 (2000); arXiv: astro-ph/9909279.

    Article  ADS  Google Scholar 

  91. Y. Ascasibar, G. Yepes, S. Gottlöber, and V. Müller, Mon. Not. R. Astron. Soc. 352, 1109 (2004); arXiv: astro-ph/0312221.

    Article  ADS  Google Scholar 

  92. O. Lahav, P. B. Lilje, J. R. Primack, and M. J. Rees, Mon. Not. R. Astron. Soc. 251, 128 (1991).

    Article  ADS  Google Scholar 

  93. A. V. Gurevich and K. P. Zybin, Sov. Phys. JETP 67, 1 (1988).

    Google Scholar 

  94. A. V. Gurevich and K. P. Zybin, Sov. Phys. JETP 67, 1957 (1988).

    Google Scholar 

  95. S. D. M. White and D. Zaritsky, Astrophys. J. 394, 1 (1992).

    Article  ADS  Google Scholar 

  96. P. Sikivie, I. I. Tkachev, and Y. Wang, Phys. Rev. D 56, 1863 (1997); arXiv: astro-ph/9609022.

    Article  ADS  Google Scholar 

  97. A. Nusser, Mon. Not. R. Astron. Soc. 325, 1397 (2001); arXiv: astro-ph/0008217.

    Article  ADS  Google Scholar 

  98. N. Hiotelis, Astron. Astrophys. 382, 84 (2002); arXiv: astro-ph/0111324.

    Article  ADS  Google Scholar 

  99. M. Le Delliou and R. N. Henriksen, Astron. Astrophys. 408, 27 (2003); arXiv: astro-ph/0307046.

    Article  ADS  Google Scholar 

  100. P. Zukin and E. Bertschinger, in Proceedings of the APS April Meeting, February 13–16, 2010, p. G13.003.

  101. Y. Hoffman, Astrophys. J. 308, 493 (1986).

    Article  ADS  Google Scholar 

  102. Y. Hoffman, Astrophys. J. 340, 69 (1989).

    Article  ADS  Google Scholar 

  103. S. Zaroubi and Y. Hoffman, Astrophys. J. 416, 410 (1993).

    Article  ADS  Google Scholar 

  104. F. Bernardeau, Astrophys. J. 433, 1 (1994); arXiv: astro-ph/9312026.

    Article  ADS  Google Scholar 

  105. J. M. Bardeen, J. R. Bond, N. Kaiser, and A. S. Szalay, Astrophys. J. 304, 15 (1986).

    Article  ADS  Google Scholar 

  106. Y. Ohta, I. Kayo, and A. Taruya, Astrophys. J. 589, 1 (2003); arXiv: astro-ph/0301567.

    Article  ADS  Google Scholar 

  107. Y. Ohta, I. Kayo, and A. Taruya, Astrophys. J. 608, 647 (2004); arXiv: astro-ph/0402618.

    Article  ADS  Google Scholar 

  108. S. Basilakos, Mon. Not. R. Astron. Soc. 395, 2347 (2009); arXiv: 0903.0452 [astro-ph.CO].

    Article  ADS  Google Scholar 

  109. F. Pace, J.-C. Waizmann, and M. Bartelmann, Mon. Not. R. Astron. Soc. 406, 1865 (2010); arXiv: 1005.0233 [astro-ph.CO].

    ADS  Google Scholar 

  110. S. Basilakos, M. Plionis, and J. Solá, Phys. Rev. D 82, 083512 (2010); arXiv: 1005.5592 [astro-ph.CO].

    Article  ADS  Google Scholar 

  111. D. F. Mota and C. van de Bruck, Astron. Astrophys. 421, 71 (2004); arXiv: astro-ph/0401504.

    Article  ADS  Google Scholar 

  112. N. J. Nunes and D. F. Mota, Mon. Not. R. Astron. Soc. 368, 751 (2006); arXiv: astro-ph/0409481.

    Article  ADS  Google Scholar 

  113. L. R. Abramo, R. C. Batista, L. Liberato, and R. Rosenfeld, J. Cosmol. Astropart. Phys., No. 11, 012 (2007); arXiv: 0707.2882 [astro-ph].

  114. L. R. Abramo, R. C. Batista, L. Liberato, and R. Rosenfeld, Phys. Rev. D 77, 067301 (2008); arXiv: 0710.2368 [astro-ph].

    Article  ADS  Google Scholar 

  115. L. R. Abramo, R. C. Batista, and R. Rosenfeld, J. Cosmol. Astropart. Phys., No. 07, 040 (2009); arXiv: 0902.3226 [astro-ph.CO].

  116. L. R. Abramo, R. C. Batista, L. Liberato, and R. Rosenfeld, Phys. Rev. D 79, 023516 (2009); arXiv: 0806.3461 [astro-ph].

    Article  ADS  Google Scholar 

  117. P. Creminelli, G. D’Amico, J. Noreña, L. Senatore, and F. Vernizzi, J. Cosmol. Astropart. Phys., No. 03, 027 (2010); arXiv: 0911.2701 [astro-ph.CO].

  118. T. Basse, O. Eggers Bj[ae]lde, and Y. Y. Y. Wong, J. Cosmol. Astropart. Phys., No. 10, 038 (2011); arXiv: 1009.0010 [astro-ph.CO].

  119. R. C. Batista and F. Pace, J. Cosmol. Astropart. Phys., No. 06, 044 (2013); arXiv: 1303.0414 [astro-ph.CO].

  120. J. S. Bullock, T. S. Kolatt, Y. Sigad, R. S. Somerville, et al., Mon. Not. R. Astron. Soc. 321, 559 (2001); arXiv: astro-ph/9908159.

    Article  ADS  Google Scholar 

  121. I. D. Karachentsev, M. E. Sharina, D. I. Makarov, A. E. Dolphin, et al., Astron. Astrophys. 389, 812 (2002); arXiv: astro-ph/0204507 [astro-ph].

    Article  ADS  Google Scholar 

  122. I. D. Karachentsev, A. E. Dolphin, D. Geisler, E. K. Grebel, et al., Astron. Astrophys. 383, 125 (2002).

    Article  ADS  Google Scholar 

  123. I. D. Karachentsev, A. Dolphin, R. B. Tully, M. Sharina, et al., Astron. J. 131, 1361 (2006); arXiv: astro-ph/0511648 [astro-ph].

    Article  ADS  Google Scholar 

  124. I. D. Karachentsev, E. K. Grebel, M. E. Sharina, A. E. Dolphin, et al., Astron. Astrophys. 404, 93 (2003); arXiv: astro-ph/0302045.

    Article  ADS  Google Scholar 

  125. I. D. Karachentsev, M. E. Sharina, A. E. Dolphin, and E. K. Grebel, Astron. Astrophys. 408, 111 (2003).

    Article  ADS  Google Scholar 

  126. I. D. Karachentsev, M. E. Sharina, A. E. Dolphin, E. K. Grebel, et al., Astron. Astrophys. 385, 21 (2002).

    Article  ADS  Google Scholar 

  127. I. D. Karachentsev, R. B. Tully, A. Dolphin, M. Sharina, et al., Astron. J. 133, 504 (2007); arXiv: astro-ph/0603091.

    Article  ADS  Google Scholar 

  128. K. A. Woodley, Astron. J. 132, 2424 (2006); arXiv: astro-ph/0608497.

    Article  ADS  Google Scholar 

  129. P. Fouque, J. M. Solanes, T. Sanchis, and C. Balkowski, Astron. Astrophys. 375, 770 (2001).

    Article  ADS  Google Scholar 

  130. W. L. Freedman, B. F. Madore, D. Hatt, T. J. Hoyt, et al., Astrophys. J. 882, 34 (2019); arXiv: 1907.05922 [astro-ph.CO].

  131. K. Hotokezaka, E. Nakar, O. Gottlieb, S. Nissanke, K. Masuda, G. Hallinan, K. P. Mooley, and A. T. Deller, Nat. Astron. 3, 940 (2019); arXiv:1806.10596 [astro-ph.CO].

  132. N. Schöneberg, J. Lesgourgues, and D. C. Hooper, J. Cosmol. Astropart. Phys., No. 10, 029 (2019); arXiv: 1907.11594 [astro-ph.CO].

  133. O. Müller, H. Jerjen, and B. Binggeli, Astron. Astrophys. 597, A7 (2017); arXiv: 1605.04130 [astro-ph.GA].

  134. S. Capozziello, K. F. Dialektopoulos, and O. Luongo, Int. J. Mod. Phys. D 28, 1950058 (2019); arXiv: 1805.01233 [gr-qc].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Del Popolo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Del Popolo, A. On the Influence of Angular Momentum and Dynamical Friction on Structure Formation. II. Turn-Around and Structure Mass. Astron. Rep. 65, 343–352 (2021). https://doi.org/10.1134/S1063772921050024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772921050024

Navigation