Skip to main content
Log in

Migration of Hot Jupiters Induced by Atmosphere Outflow

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract—

As is known, the influence of the ionizing radiation and the gravity of a star on a hot Jupiter results in the outflow of its atmosphere. Due to the gravity of the planet, the outflowing matter acquires angular momentum, after which it is accumulated on a higher circular orbit around the star and forms a disk or a torus. The angular momentum interexchange between the torus and the planet induces the migration of the planet to the star. In this paper, we consider the effectiveness of this migration mechanism by the example of the HD 209458 system. It turns out that, after 4.5 × 109 years since the evaporation of the protoplanetary disk, the planet might migrate from an orbit at ≳0.67 AU to its current orbit at 0.045 AU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

Notes

  1. The authors of a paper [29] assumed H/a = 0.05 and the value of the turbulent viscosity coefficient corresponding to α = 4 × 10−3.

  2. Some of them are reviewed in books [34, 35].

  3. The BDF method [43], which was realized with the Python scipy.integrate routine [44], was used.

  4. The code is available on https://github.com/evgenykurbatov/kbs20-hotjup-migration.

REFERENCES

  1. P. J. Armitage, Astrophysics of Planet Formation (Cambridge Univ. Press, Cambridge, 2009).

    Book  Google Scholar 

  2. S. H. Lubow and S. Ida, in Exoplanets, Ed. by S. Seager (Univ. Arizona Press, Tucson, 2009).

  3. P. Goldreich and S. Tremaine, Astrophys. J. 241, 425 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  4. P. Artymowicz, Astrophys. J. 419, 155 (1993).

    Article  ADS  Google Scholar 

  5. D. N. C. Lin and J. Papaloizou, Astrophys. J. 309, 846 (1986).

    Article  ADS  Google Scholar 

  6. S. Nayakshin and G. Lodato, Mon. Not. R. Astron. Soc. 426, 70 (2012).

    Article  ADS  Google Scholar 

  7. F. S. Masset and J. C. B. Papaloizou, Astrophys. J. 588, 494 (2003).

    Article  ADS  Google Scholar 

  8. K. E. Haisch, Jr., E. A. Lada, and C. J. Lada, Astrophys. J. 553, L153 (2001).

    Article  ADS  Google Scholar 

  9. P. J. Armitage, arXiv: 1509.06382 [astro-ph.SR] (2015).

  10. E. Podlewska-Gaca, J. C. B. Papaloizou, and E. Szuszkiewicz, Mon. Not. R. Astron. Soc. 421, 1736 (2012).

    Article  ADS  Google Scholar 

  11. L. Tu, C. P. Johnstone, M. Güdel, and H. Lammer, Astron. Astrophys. 577, L3 (2015).

    Article  ADS  Google Scholar 

  12. D. Bisikalo, P. Kaygorodov, D. Ionov, V. Shematovich, H. Lammer, and L. Fossati, Astrophys. J. 764, 19 (2013).

    Article  ADS  Google Scholar 

  13. A. A. Cherenkov, D. V. Bisikalo, and A. G. Kosovichev, Mon. Not. R. Astron. Soc. 475, 605 (2018).

    Article  ADS  Google Scholar 

  14. A. A. Cherenkov, I. F. Shaikhislamov, D. V. Bisikalo, V. I. Shematovich, L. Fossati, and C. Möstl, Astron. Rep. 63, 94 (2019).

    Article  ADS  Google Scholar 

  15. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 63, 550 (2019).

    Article  ADS  Google Scholar 

  16. A. G. Zhilkin, D. V. Bisikalo, and P. V. Kaygorodov, Astron. Rep. 64, 159 (2020).

    Article  ADS  Google Scholar 

  17. A. A. Cherenkov, D. V. Bisikalo, and P. V. Kaygorodov, Astron. Rep. 58, 679 (2014).

    Article  ADS  Google Scholar 

  18. T. Matsakos, A. Uribe, and A. Königl, Astron. Astrophys. 578, A6 (2015).

    Article  ADS  Google Scholar 

  19. M. L. Khodachenko, I. F. Shaikhislamov, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, M. S. Rumenskikh, K. G. Kislyakova, and N. K. Dwivedi, Astrophys. J. 885, 67 (2019).

    Article  ADS  Google Scholar 

  20. I. F. Shaikhislamov, M. L. Khodachenko, H. Lammer, A. G. Berezutsky, I. B. Miroshnichenko, and M. S. Rumenskikh, Mon. Not. R. Astron. Soc. 491, 3435 (2020).

    ADS  Google Scholar 

  21. A. Debrecht, J. Carroll-Nellenback, A. Frank, E. G. Blackman, L. Fossati, J. McCann, and R. Murray-Clay, Mon. Not. R. Astron. Soc. 493, 1292 (2020).

    Article  ADS  Google Scholar 

  22. H. Lammer, F. Selsis, I. Ribas, E. F. Guinan, S. J. Bauer, and W. W. Weiss, Astrophys. J. 598, L121 (2003).

    Article  ADS  Google Scholar 

  23. S. H. Gross, J. Atmospher. Sci. 29, 214 (1972).

    Google Scholar 

  24. A. García Muñoz, Planet. Space Sci. 55, 1426 (2007).

    Article  ADS  Google Scholar 

  25. K. J. Zahnle and J. C. G. Walker, Rev. Geophys. Space Phys. 20, 280 (1982).

    Article  ADS  Google Scholar 

  26. A. Vidal-Madjar, A. Lecavelier des Etangs, J. M. Désert, G. E. Ballester, R. Ferlet, G. Hébrard, and M. Mayor, Astrophys. J. 676, L57 (2008).

    Article  ADS  Google Scholar 

  27. D. V. Bisikalo, P. V. Kaigorodov, D. E. Ionov, and V. I. Shematovich, Astron. Rep. 57, 715 (2013).

    Article  ADS  Google Scholar 

  28. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  29. M. R. Bate, S. H. Lubow, G. I. Ogilvie, and K. A. Miller, Mon. Not. R. Astron. Soc. 341, 213 (2003).

    Article  ADS  Google Scholar 

  30. T. T. Koskinen, R. V. Yelle, P. Lavvas, and N. K. Lewis, Astrophys. J. 723, 116 (2010).

    Article  ADS  Google Scholar 

  31. K. M. Flaherty, A. M. Hughes, S. C. Rose, J. B. Simon, et al., Astrophys. J. 843, 150 (2017).

    Article  ADS  Google Scholar 

  32. K. M. Flaherty, A. M. Hughes, R. Teague, J. B. Simon, S. M. Andrews, and D. J. Wilner, Astrophys. J. 856, 117 (2018).

    Article  ADS  Google Scholar 

  33. J. E. Pringle, Ann. Rev. Astron. Astrophys. 19, 137 (1981).

    Article  ADS  Google Scholar 

  34. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence (Moscow, Nauka, 1965; MIT, Cambridge, 1971), Vol. 1.

  35. A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence (Moscow, Nauka, 1967; MIT, Cambridge, 1975), Vol. 2.

  36. J. C. B. Papaloizou and C. Terquem, Rep. Prog. Phys. 69, 119 (2006).

    Article  ADS  Google Scholar 

  37. G. Lesur and J. C. B. Papaloizou, Astron. Astrophys. 513, A60 (2010).

    Article  ADS  Google Scholar 

  38. S. Kumar and C. S. Coleman, Mon. Not. R. Astron. Soc. 260, 323 (1993).

    Article  ADS  Google Scholar 

  39. E. P. Kurbatov, D. V. Bisikalo, and P. V. Kaygorodov, Phys. Usp. 57, 787 (2014).

    Article  ADS  Google Scholar 

  40. E. P. Kurbatov and D. V. Bisikalo, Astron. Rep. 61, 475 (2017).

    Article  ADS  Google Scholar 

  41. Y. Nakao and S. Kato, Publ. Astron. Soc. Jpn. 47, 451 (1995).

    ADS  Google Scholar 

  42. W. Rodi and D. B. Spalding, Waerme Stoffuebertragung 3, 85 (1970).

    Article  ADS  Google Scholar 

  43. L. F. Shampine and M. W. Reichelt, Siam J. Sci. Compute 18, 1 (1997).

    Google Scholar 

  44. P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, et al., Nat. Methods 17, 261 (2020).

    Article  Google Scholar 

  45. N. Shakura, Accretion Flows in Astrophysics (Springer, Cham, Switzerland, 2018).

    Book  Google Scholar 

  46. G. L. Withbroe, Astrophys. J. 325, 442 (1988).

    Article  ADS  Google Scholar 

  47. B. Jackson, R. Greenberg, and R. Barnes, Astrophys. J. 678, 1396 (2008).

    Article  ADS  Google Scholar 

  48. C. J. Clarke and J. Bouvier, Mon. Not. R. Astron. Soc. 319, 457 (2000).

    Article  ADS  Google Scholar 

  49. R. D. Alexander, C. J. Clarke, and J. E. Pringle, Mon. Not. R. Astron. Soc. 369, 216 (2006).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.V. Akimkin, Ya.N. Pavlyuchenkov, and N.N. Chugai for useful discussions.

Funding

E.P. Kurbatov and D.V. Bisikalo are supported by the Russian Scientific Foundation (project no. 18-12-00447) and I.F. Shaikhislamov, by the Russian Foundation for Basic Research (project no. 20-02-00520).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. P. Kurbatov, D. V. Bisikalo or I. F. Shaikhislamov.

Additional information

Translated by E. Petrova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurbatov, E.P., Bisikalo, D.V. & Shaikhislamov, I.F. Migration of Hot Jupiters Induced by Atmosphere Outflow. Astron. Rep. 64, 1016–1025 (2020). https://doi.org/10.1134/S1063772920120069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772920120069

Navigation