Skip to main content
Log in

The Simulation of Orbit Decay of Double Neutron Star System PSR J1906+0746 by the Gravitational Wave Radiation

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

With the discovery of the double neutron star (DNS) merger event GW170817 by LIGO, DNS systems have become one of the important candidates for gravitational wave (GW) observation. There are 19 DNS systems that have been discovered, and PSR J1906+0746 is the youngest DNS system with the age of about 0.1 Myrs. We simulate its orbital decay over its entire life by the GW radiation from the initial stage to the coalescence. For the DNS PSR J1906+0746, we obtain its initial orbital period of 3.99 hrs (3.98 hrs at present) with the nearly circular orbit, and the merger age of 3.18 × 108 yr. At the last minute of coalescence, corresponding to the orbital radius change from 335 to 30 km, we present the GW frequency to be 30 and 1122 Hz, respectively. As a comparison, with the GW frequency from 45 to 450 Hz, the orbital radii of the source GW170817 correspond to 163 and 57 km, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Abbott, R. Abbott, T. D. Abbott, et al., Phys. Rev. Lett. 119, 161101 (2017).

    Article  ADS  Google Scholar 

  2. E. Troja, L. Piro, H. van Eerten, et al., Nature. 551, 71 (2017).

    Article  ADS  Google Scholar 

  3. P. K. Blanchard, E. Berger, W. Fong, et al., Astrophys. J. 848, L22 (2017).

    Article  ADS  Google Scholar 

  4. R. A. Hulseand and J. H. Taylor, Astrophys. J. 195, L51 (1975).

    Article  ADS  Google Scholar 

  5. J. H. Taylor and J. M. Weisberg, Astrophys. J. 253, 908 (1982).

    Article  ADS  Google Scholar 

  6. M. Burgay, N. D’Amico, A. Possenti, et al., Nature. 426, 531 (2003).

    Article  ADS  Google Scholar 

  7. A. G. Lyne, M. Burgay, M. Kramer, et al., Science. 303, 1153 (2004).

    Article  ADS  Google Scholar 

  8. M. Kramer, I. H. Stairs, R. N. Manchester, et al., Science. 314, 97 (2006).

    Article  ADS  Google Scholar 

  9. J. van Leeuwen, L. Kasian, I. H. Stairs, et al., Astrophys. J. 798, 118 (2015).

    Article  ADS  Google Scholar 

  10. B. F. Schutz, Nature. 323, 310 (1986).

    Article  ADS  Google Scholar 

  11. C. Cutler, T. A. Apostolatos, L. Bildsten, et al., Astrophys. J. 70, 2984 (1992).

    Google Scholar 

  12. F. Maione, R. D. Pietri, A. Feo, and F. Loffler, CQGra. 33, 175009 (2016).

    Article  ADS  Google Scholar 

  13. M. Shibata and K. Uryu, Phys. Rev. D. 61, 064001 (2000).

    Article  ADS  Google Scholar 

  14. P. C. Peters, Phys. Rev. Lett. 136, 1224 (1964).

    ADS  Google Scholar 

  15. Y. Y. Yang, C. M. Zhang, D. Li, D. H. Wang, Y. Y. Pan, R. F. Lingfu, and Z. W. Zhou, Astrophys. J. 835, 185 (2017).

    Article  ADS  Google Scholar 

  16. Y. Y. Yang, C. M. Zhang, D. Li, L. Chen, R. F. Linghu, and Q. J. Zhi, PASP. 131, 064201 (2019).

    Article  ADS  Google Scholar 

  17. D. Lorimer, I. H. Stairs, P. C. Freire, et al., Astrophys. J. 640, 428 (2006).

    Article  ADS  Google Scholar 

  18. S. L. Shapiroand and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects. John (Wiley, 1983).

    Book  Google Scholar 

  19. A. P. Lightman, W. H. Press, R. H. Price, et al., Problem book in relativity and gravitation (Princeton University Press, 1975).

    MATH  Google Scholar 

  20. A. P. Lightman and S. L. Shapiro, Astrophys. J. 198, L73 (1975).

    Article  ADS  Google Scholar 

  21. A. G. Lyne and F. Graham-Smith, Pulsar astronomy (Cambridge University Press, 2006).

    Google Scholar 

  22. H. C. Ohanian and R. Ruffini, Gravitation and Spacetime (W. W. Norton & Company, 1994).

    MATH  Google Scholar 

  23. P. C. Peters and J. Mathews, Phys. Rev. 131, 435 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  24. J. M. Cordes, P. C. C. Freire, D. R. Lorimer, et al., Astrophys. J. 637, 446 (2006).

    Article  ADS  Google Scholar 

  25. B. P. Abbott, R. Abbott, R. Adhikari, et al., Phys. Rev. D. 79, 122001 (2009).

    Article  ADS  Google Scholar 

  26. F. Camilo, S. E. Thorsett, and S. R. KulKarni, Astrophys. J. 421, 15 (1994).

    Article  ADS  Google Scholar 

  27. D. Lorimer, P. C. Freire, I. H. Stairs, et al., Monthly Not. Roy. Astron. Soc. 379, 1217 (2007).

    Article  ADS  Google Scholar 

  28. B. P. Abbott, R. Abbott, T. D. Abbott, et al., Phys. Rev. X. 9, 031040 (2019)

    Google Scholar 

  29. O. A. Kuznetsov, M. E. Prokhorov, M. V. Sazhin, and V. M. Chechetkin, Astron. Rep. 42, 638 (1998).

    ADS  Google Scholar 

Download references

Funding

This work is supported by the National Basic Research Program (973 Program) (no. 2015CB857100), National Key R & D Program of China (no. 2017YFA0402600), the National Natural Science Foundation of China (nos. 11173034, 11703003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Zhang, CM., Li, D. et al. The Simulation of Orbit Decay of Double Neutron Star System PSR J1906+0746 by the Gravitational Wave Radiation. Astron. Rep. 63, 1090–1094 (2019). https://doi.org/10.1134/S1063772919130031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772919130031

Navigation