Skip to main content
Log in

Flow Structure in the Eclipsing Polar V808 Aur. Results of 3D Numerical Simulations

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The structure of the flows in the eclipsing polar V808 Aur is studied. Comparison of computations with observed light curves is used to identify and clarify a number of features in the system, such as the drift of the hot spot—the place where the stream from the inner Lagrange point approaches the surface of the white dwarf, changes in the brightness in the secondary minimum, a dip in the light curve in the high state before entering the eclipse, the asymmetrical eclipse profile in high state, and others. A three-dimensional numerical MHD model based on the approximation of modified magnetic hydrodynamics is used in these studies. Numerical computations were carried out for several mass-exchange rates corresponding to different states of activity of the V808 Aur system. The computations show that, as the mass-exchange rate increases, the length of the ballistic part of the accretion stream increases, leading to changes in the spatial configuration of the flow and an appreciable drift of the region of energy release on the surface of the white dwarf (by up to 30° in longitude). These changes in the flow structure lead to effects in the light curve that are in good agreement with the available observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Warner, Cataclysmic Variable Stars (Cambridge Univ. Press, Cambridge, 2003).

    Google Scholar 

  2. A. M. Cherepashchuk, Close Binary Stars (Fizmatlit, Moscow, 2013), Vols. 1, 2 [in Russian].

    MATH  Google Scholar 

  3. S. Tapia, Bull. Am. Astron. Soc. 8, 511 (1976).

    ADS  Google Scholar 

  4. A. G. Zhilkin, D. V. Bisikalo, and A. A. Boyarchuk, Phys. Usp. 55, 115 (2012).

    Article  ADS  Google Scholar 

  5. D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  6. C. G. Campbell,Magnetohydrodynamics in Binary Stars (Kluwer Academic, Dordrecht, 1997).

    Book  Google Scholar 

  7. J. Patterson, Publ. Astron. Soc. Pacif. 106, 209 (1994).

    Article  ADS  Google Scholar 

  8. A. G. Zhilkin, D.V. Bisikalo, and P. A. Mason, Astron. Rep. 56, 257 (2012).

    Article  ADS  Google Scholar 

  9. T. R. Marsh, Mon. Not. R. Astron. Soc. 231, 1117 (1988).

    Article  ADS  Google Scholar 

  10. H. C. Spruit, arXiv:astro. No. ph/9806141v1 (1998).

    Google Scholar 

  11. E. J. Kotze, S. B. Potter, and V. A. McBride, Astron. Astrophys. 579, A77 (2015).

    Article  ADS  Google Scholar 

  12. E. J. Kotze, S. B. Potter, and V. A. McBride, Astron. Astrophys. 595, A47 (2016).

    Article  ADS  Google Scholar 

  13. D. A. Kononov, M. I. Agafonov, O. I. Sharova, D. V. Bisikalo, A. G. Zhilkin, and M. Yu. Sidorov, Astron. Rep. 58, 881 (2014).

    Article  ADS  Google Scholar 

  14. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 54, 1063 (2010).

    Article  ADS  Google Scholar 

  15. P. Hakala, M. Cropper, and G. Ramsay, Mon. Not. R. Astron. Soc. 334, 990 (2002).

    Article  ADS  Google Scholar 

  16. A. R. King, Mon. Not. R. Astron. Soc. 261, 144 (1993).

    Article  ADS  Google Scholar 

  17. G. A. Wynn and A. R. King, Mon. Not. R. Astron. Soc. 275, 9 (1995).

    Article  ADS  Google Scholar 

  18. G. A. Wynn, A. R. King, and K. Horne, Mon. Not. R. Astron. Soc. 286, 436 (1997).

    Article  ADS  Google Scholar 

  19. A. R. King and G. A. Wynn, Mon. Not. R. Astron. Soc. 310, 203 (1999).

    Article  ADS  Google Scholar 

  20. A. J. Norton, J. A. Wynn, and R. V. Somerscales, Astrophys. J. 614, 349 (2004).

    Article  ADS  Google Scholar 

  21. N. R. Ikhsanov, V. V. Neustroev, and N. G. Beskrovnaya, Astron. Astrophys. 421, 1131 (2004).

    Article  ADS  Google Scholar 

  22. A. J. Norton, O. W. Butters, T. L. Parker, and G. A. Wynn, Astrophys. J. 672, 524 (2008).

    Article  ADS  Google Scholar 

  23. S. D. Drell, H. M. Foley, and M. A. Ruderman, J. Geophys. Res. 70, 3131 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  24. A. V. Gurevich, A. L. Krylov, and E. N. Fedorov, Sov. Phys. JETP 48, 1074 (1978).

    ADS  Google Scholar 

  25. R. R. Rafikov, A. V. Gurevich, and K. P. Zybin, J. Exp. Theor. Phys. 88, 297 (1999).

    Article  ADS  Google Scholar 

  26. P. B. Isakova, N. R. Ikhsanov, A. G. Zhilkin, D. V. Bisikalo, and N. G. Beskrovnaya, Astron. Rep. 60, 498 (2016).

    Article  ADS  Google Scholar 

  27. A. G. Zhilkin, D. V. Bisikalo, and V. A. Ustyugov, AIP Conf. Proc. 1551, 22 (2013).

    Article  ADS  Google Scholar 

  28. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 53, 436 (2009).

    Article  ADS  Google Scholar 

  29. A. G. Zhilkin and D. V. Bisikalo, Adv. Space Res. 45, 437 (2010).

    Article  ADS  Google Scholar 

  30. A. G. Zhilkin and D. V. Bisikalo, Astron. Rep. 54, 840 (2010).

    Article  ADS  Google Scholar 

  31. D. V. Bisikalo, A. G. Zhilkin, P. V. Kaygorodov, V. A. Ustyugov, and M. M. Montgomery, Astron. Rep. 57, 327 (2013).

    Article  ADS  Google Scholar 

  32. V. A. Ustyugov, A. G. Zhilkin, and D. V. Bisikalo, Astron. Rep. 57, 811 (2013).

    Article  ADS  Google Scholar 

  33. A. M. Fateeva, A. G. Zhilkin, and D. V. Bisikalo, Astron. Rep. 60, 87 (2016).

    Article  ADS  Google Scholar 

  34. P. B. Isakova, A. G. Zhilkin, and D. V. Bisikalo, Astron. Rep. 59, 843 (2015).

    Article  ADS  Google Scholar 

  35. P. B. Isakova, A. G. Zhilkin, D. V. Bisikalo, A. N. Semena, and M. G. Revnivtsev, Astron. Rep. 61, 560 (2017).

    Article  ADS  Google Scholar 

  36. P. B. Isakova, A. G. Zhilkin, and D. V. Bisikalo, Astron. Rep. 62, 492 (2018).

    Article  ADS  Google Scholar 

  37. E. P. Kurbatov, A. G. Zhilkin, and D. V. Bisikalo, Astron. Rep. 63, 25 (2019).

    Article  ADS  Google Scholar 

  38. E. P. Kurbatov, A. G. Zhilkin, and D. V. Bisikalo, Phys. Usp. 60, 798 (2017).

    Article  ADS  Google Scholar 

  39. M. Templeton, A. Oksanen, D. Boyd, R. Pickard, and H. Maehara, Central Bureau Electron. Telegrams, No. 1652 (2009).

  40. A. J. Drake, S. G. Djorgovski, A. Mahabal, E. Beshore, et al., Astrophys. J. 696, 870 (2009).

    Article  ADS  Google Scholar 

  41. A. J. Drake, B. T. Gänsicke, and S. G. Djorgovski, Mon. Not. R. Astron. Soc. 441, 1186 (2014).

    Article  ADS  Google Scholar 

  42. E. V. Kazarovets, N. N. Samus, O. V. Durlevich, N. N. Kireeva, and E. N. Pastukhova, Inform. Bull. Var. Stars, No. 6151 (2015).

  43. N. N. Samus’, E. V. Kazarovets, O. V. Durlevich, N. N. Kireeva, and E. N. Pastukhova, Astron. Rep. 61, 80 (2017).

    Article  ADS  Google Scholar 

  44. A. G. A. Brown, A. Vallenari, T. Prusti, J. H. J. de Bruijne, et al., Astron. Astrophys 616, A1 (2018); Gaia Collab., VizieR Online Data Catalog, No. 1345 (2018).

    Article  Google Scholar 

  45. A. D. Schwope, F. Mackebrandt, B. D. Thinius, C. Littlefield, P. Garnavich, A. Oksanen, and T. Granzer, Astron. Nachricht. 336, 115 (2015).

    Article  ADS  Google Scholar 

  46. H. Worpel and A. D. Schwope, Astron. Astrophys. 583, A130 (2015).

    Article  ADS  Google Scholar 

  47. N. V. Borisov, M. M. Gabdeev, and V. L. Afanasiev, Astrophys. Bull. 71, 95 (2016).

    Article  ADS  Google Scholar 

  48. N. V. Borisov, M. M. Gabdeev, V. V. Shimansky, N. A. Katysheva, A. I. Kolbin, S. Yu. Shugarov, and V. P. Goranskij, Astrophys. Bull. 71, 101 (2016).

    Article  ADS  Google Scholar 

  49. A. I. Kolbin, N. A. Serebryakova, M. M. Gabdeev, and N. V. Borisov, Astrophys. Bull. 74, 80 (2019).

    Article  ADS  Google Scholar 

  50. V. V. Sobolev, Course of Theoretical Astrophysics (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  51. Q.-S. Wang, S.-B. Qian, Z.-T. Han, M. Zejda, E. Fernbndez-Lajus, and L.-Y. Zhu, Res. Astron. Astrophys. 18, 075 (2018).

    Article  ADS  Google Scholar 

  52. Z. N. Khangale, S. B. Potter, E. J. Kotze, P. A. Woudt, and H. Breytenbach, Astron. Astrophys. 621, A31 (2019).

    Article  ADS  Google Scholar 

  53. H. Breytenbach, D. A. H. Buckley, P. Hakala, J. R. Thorstensen, et al., Mon. Not. R. Astron. Soc. 484, 3831 (2019).

    Article  ADS  Google Scholar 

  54. N. Wells and P. Mason, in Proceedings of the Am. Astron. Soc. Meeting No. 231 2018, id. 358.06.

  55. S. H. Lubow and F. H. Shu, Astrophys. J. 198, 383 (1975).

    Article  ADS  Google Scholar 

  56. T. Tanaka, J. Comp. Phys. 111, 381 (1994).

    Article  ADS  Google Scholar 

  57. K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. de Zeeuw, J. Comp. Phys. 154, 284 (1999).

    Article  ADS  Google Scholar 

  58. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Problems in the Numerical Solution of Hyperbolic Systems of Equations (Fizmatlit, Moscow, 2001) [in Russian].

    MATH  Google Scholar 

  59. A. V. Koldoba, M. M. Romanova, G. V. Ustyugova, and R. V. E. Lovelace, Astrophys. J. 576, L53 (2002).

    Article  ADS  Google Scholar 

  60. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, J. V. Wick, and R. V. E. Lovelace, Astrophys. J. 595, 1009 (2003).

    Article  ADS  Google Scholar 

  61. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, J. V. Wick, and R. V. E. Lovelace, Astrophys. J. 610, 920 (2004).

    Article  ADS  Google Scholar 

  62. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, J. V. Wick, and R. V. E. Lovelace, Astrophys. J. 616, L151 (2004).

    Article  ADS  Google Scholar 

  63. D. P. Cox and E. Daltabuit, Astrophys. J. 167, 113 (1971).

    Article  ADS  Google Scholar 

  64. A. Dalgarno and R. A. McCray, Ann. Rev. Astron. Astrophys. 10, 375 (1972).

    Article  ADS  Google Scholar 

  65. J. C. Raymond, D. P. Cox, and B. W. Smith, Astrophys. J. 204, 290 (1976).

    Article  ADS  Google Scholar 

  66. L. Spitzer, Physical Processes in the Interstellar Medium (Wiley, New York, 1978; Mir, Moscow, 1981).

    Google Scholar 

  67. S. I. Braginskii, Sov. Phys. JETP 10, 1005 (1960).

    MathSciNet  Google Scholar 

  68. S. Galtier, S. V. Nazarenko, A. C. Newell, and A. Pouquet, J. Plasma Phys. 63, 447 (2000).

    Article  ADS  Google Scholar 

  69. V. E. Zakharov, Zh. Prikl. Mekh. Tekh. Fiz. 6, 14 (1965).

    Google Scholar 

  70. P. S. Iroshnikov, Sov. Astron. 7, 566 (1963).

    ADS  MathSciNet  Google Scholar 

  71. R. H. Kraichnan, Phys. Fluids 8, 575 (1965).

    Article  ADS  MathSciNet  Google Scholar 

  72. D. A. Frank-Kamenetskii, Lectures on Plasma Physics (Atomizdat, Moscow, 1968) [in Russian].

    Google Scholar 

  73. F. Chen, Introduction to Plasma Physics (Springer, New York, 1974).

    Google Scholar 

  74. P. Cargo and G. Gallice, J. Comput. Phys. 136, 446 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  75. S. R. Chakravarthy and S. Osher, AIAA Papers, No. 85-0363 (1985).

    Google Scholar 

  76. A. Dedner, F. Kemm, D. Kroner, C.-D. Munz, T. Schnitzer, and M. Wesenberg, J. Comput. Phys. 175, 645 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  77. M. M. Romanova, G. V. Ustyugova, A. V. Koldoba, and R. V. E. Lovelace, Astrophys. J. 610, 920 (2004).

    Article  ADS  Google Scholar 

  78. A. A. Boyarchuk, B. M. Shustov, I. S. Savanov, M. E. Sachkov, D. V. Bisikalo, L. I. Mashonkina, D. Z. Wiebe, V. I. Shematovich, Yu. A. Shchekinov, T. A. Ryabchikova, N. N. Chugai, P. B. Ivanov, N. V. Voshchinnikov, A. I. Gomez de Castro, S. A. Lamzin, et al., Astron. Rep. 60, 1 (2016).

    Article  ADS  Google Scholar 

  79. P. L. Roe, Lect. Notes Phys. 141, 354 (1980).

    Article  ADS  Google Scholar 

  80. S. K. Godunov, Mat. Sb. 47, 271 (1959).

    MathSciNet  Google Scholar 

  81. M. Brio and C. C. Wu, J. Comput. Phys. 75, 400 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  82. D. S. Balsara, Astrophys. J. Suppl. 116, 119 (1998).

    Article  ADS  Google Scholar 

  83. B. Einfeldt, SIAM J. Numer. Anal. 25, 294 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  84. A. A. Boyarhuk, D. V. Bisikalo, O. A. Kuznetsov, and V. M. Chechetkin, Mass Transfer in Close Binary Stars (Taylor and Francis, London, 2002).

    Google Scholar 

Download references

Acknowledgments

This work was carried out using computing resources of the Complex for Simulation and Data Processing forMega-Science Facilities of the Kurchatov Institute (http://ckp.nrcki.ru/), as well as the computing cluster of the Interdepartmental Supercomputer Center of the Russian Academy of Sciences.

Funding

This work was supported by the Russian Foundation for Basic Research (grant 19-52-60001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sobolev.

Additional information

Russian Text © The Author(s), 2019, published in Astronomicheskii Zhurnal, 2019, Vol. 96, No. 9, pp. 748–775.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhilkin, A.G., Sobolev, A.V., Bisikalo, D.V. et al. Flow Structure in the Eclipsing Polar V808 Aur. Results of 3D Numerical Simulations. Astron. Rep. 63, 751–777 (2019). https://doi.org/10.1134/S1063772919090087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772919090087

Navigation