Abstract
As a rule, the orbits of “hot Jupiter” exoplanets are located close to the Alfven point of the stellar wind of the host star. Many hot Jupiters could be in the sub-Alfven zone, where the magnetic pressure of the stellar wind exceeds the dynamical pressure. Therefore, the magnetic field in the wind should play an extremely important role in the process of stellar wind flowing around the atmosphere of a hot Jupiter. This must be taken into account when constructing theoretical models and interpreting observational data. Analyses show that many typical hot Jupiters should have shockless induced magnetospheres, which have no analogs in the solar system. Such magnetospheres are characterized first and foremost by the fact that there is no bow shock, and the magnetic barrier (ionopause) is formed by induced currents in upper layers of the ionosphere. This conclusion is confirmed here using three-dimensional numerical simulations of the flow of the stellar wind from the host star around the hot Jupiter HD 209458b, taking into account both the intrinsic magnetic field of the planet and the magnetic field in the wind.
Similar content being viewed by others
References
E. S. Belen’kaya, Phys. Usp. 52, 765 (2009).
M. Saunders, in Advances in Solar System Magnetohydrodynamics, Ed. by E. R. Priest and A. W. Hood (Cambridge Univ., Cambridge, 1991; Mir, Moscow, 1995).
R. A. Murray-Clay, E. I. Chiang, and N. Murray, Astrophys. J. 693, 23 (2009).
M. Mayor and D. Queloz, Nature 378, 355 (1995).
D. Lai, C. Helling, and E. P. J. van den Heuvel, Astrophys. J. 721, 923 (2010).
S.-L. Li, N. Miller, D. N. C. Lin, and J. J. Fortney, Nature 463, 1054 (2010).
A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Désert, G. E. Ballester, R. Ferlet, G. Hébrard, and M. Mayor, Nature 422, 143 (2003).
A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Désert, G. E. Ballester, R. Ferlet, G. Hébrard, and M. Mayor, Astrophys. J. 676, L57 (2008).
L. Ben-Jaffel, Astrophys. J. 671, L61 (2007).
A. Vidal-Madjar, J.-M. Désert, A. Lecavelier des Etangs, G. Hébrard, et al., Astrophys. J. 604, L69 (2004).
L. Ben-Jaffel and S. Sona Hosseini, Astrophys. J. 709, 1284 (2010).
J. L. Linsky, H. Yang, K. France, C. S. Froning, J. C. Green, J. T. Stocke, and S. N. Osterman, Astrophys. J. 717, 1291 (2010).
R. V. Yelle, Icarus 170, 167 (2004).
A. Garcia Munoz, Planet. Space Sci. 55, 1426 (2007).
T. T. Koskinen, M. J. Harris, R. V. Yelle, and P. Lavvas, Icarus 226, 1678 (2013).
D. E. Ionov, V. I. Shematovich, and Ya. N. Pavlyuchenkov, Astron. Rep. 61, 387 (2017).
D. Bisikalo, P. Kaygorodov, D. Ionov, V. Shematovich, H. Lammer, and L. Fossati, Astrophys. J. 764, 19 (2013).
D. V. Bisikalo, P. V. Kaigorodov, D. E. Ionov, and V. I. Shematovich, Astron. Rep. 57, 715 (2013).
A. A. Cherenkov, D. V. Bisikalo, and P. V. Kaigorodov, Astron. Rep. 58, 679 (2014).
D. V. Bisikalo and A. A. Cherenkov, Astron. Rep. 60, 183 (2016).
A. A. Cherenkov, D. V. Bisikalo, L. Fossati, and C. Mostl, Astrophys. J. 846, 31 (2017).
A. A. Cherenkov, D. V. Bisikalo, and A. G. Kosovichev, Mon. Not. R. Astron. Soc. 475, 605 (2018).
D. V. Bisikalo, V. I. Shematovich, A. A. Cherenkov, L. Fossati, and C. Mostl, Astrophys. J. 869, 108 (2018).
A. S. Arakcheev, A. G. Zhilkin, P. V. Kaigorodov, D. V. Bisikalo, and A. G. Kosovichev, Astron. Rep. 61, 932 (2017).
D. V. Bisikalo, A. S. Arakcheev, and P. V. Kaigorodov, Astron. Rep. 61, 925 (2017).
W.-H. Ip, A. Kopp, and J. H. Hu, Astrophys. J. 602, L53 (2004).
D. Fabbian, R. Simoniello, R. Collet, S. Criscuoli, et al., Astron. Nachricht. 338, 753 (2017).
H. Lammer, M. Güdel, Y. Kulikov, I. Ribas, et al., Earth, Planets Space 64, 179 (2012).
M. J. Owens and R. J. Forsyth, Liv. Rev. Solar Phys. 10, 5 (2013).
E. N. Parker, Astrophys. J. 128, 664 (1958).
V. B. Baranov and K. V. Krasnobaev, Hydrodynamical Theory of Cosmic Plasma (Nauka, Moscow, 1977) [in Russian].
G. L. Withbroe, Astrophys. J. 325, 442 (1988).
C. T. Russell, Rep. Prog. Phys. 56, 687 (1993).
L. D. Landau and E. M. Livshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Fizmatlit, Moscow, 2001; Pergamon, New York, 1984).
D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].
A. G. Zhilkin, D. V. Bisikalo, and A. A. Boyarchuk, Phys. Usp. 55, 115 (2012).
T. Tanaka, J. Comput. Phys. 111, 381 (1994).
K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. de Zeeuw, J. Comp. Phys. 154, 284 (1999).
P. L. Roe, Lect. Notes Phys. 141, 354 (1980).
P. D. Lax, Commun. Pure Appl. Math. 7, 159 (1954).
R. O. Friedrihs, Commun. Pure Appl. Math. 7, 345 (1954).
P. Cargo and G. Gallice, J. Comput. Phys. 136, 446 (1997).
A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Problems of Numerical Solution of Hyperbolic Systems of Equations (Fizmatlit, Moscow, 2001) [in Russian].
S. R. Chakravarthy and S. Osher, Am. Inst. Aeronaut. Astronaut. Preprint No. 85-0363 (AIAA, 1985).
A. Dedner, F. Kemm, D. Kroner, C.-D. Munz, T. Schnitzer, and M. Wesenberg, J. Comput. Phys. 175, 645 (2002).
D. Charbonneau, T. M. Brown, D. W. Latham, and M. Mayor, Astrophys. J. 529, L45 (2000).
K. G. Kislyakova, M. Holmstrtsm, H. Lammer, P. Odert, and M. L. Khodachenko, Science 346, 981 (2014).
D. J. Stevenson, Rep. Prog. Phys. 46, 555 (1983).
Acknowledgments
We thank P.V. Kaigorodov for useful discussions. The computations were carried out using the supercomputer of the National Research Center “Kurchatov Institute”.
Author information
Authors and Affiliations
Corresponding author
Additional information
Russian Text © The Author(s), 2019, published in Astronomicheskii Zhurnal, 2019, Vol. 96, No. 7, pp. 547–562.
Rights and permissions
About this article
Cite this article
Zhilkin, A.G., Bisikalo, D.V. On Possible Types of Magnetospheres of Hot Jupiters. Astron. Rep. 63, 550–564 (2019). https://doi.org/10.1134/S1063772919070096
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063772919070096