Skip to main content
Log in

On Possible Types of Magnetospheres of Hot Jupiters

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

As a rule, the orbits of “hot Jupiter” exoplanets are located close to the Alfven point of the stellar wind of the host star. Many hot Jupiters could be in the sub-Alfven zone, where the magnetic pressure of the stellar wind exceeds the dynamical pressure. Therefore, the magnetic field in the wind should play an extremely important role in the process of stellar wind flowing around the atmosphere of a hot Jupiter. This must be taken into account when constructing theoretical models and interpreting observational data. Analyses show that many typical hot Jupiters should have shockless induced magnetospheres, which have no analogs in the solar system. Such magnetospheres are characterized first and foremost by the fact that there is no bow shock, and the magnetic barrier (ionopause) is formed by induced currents in upper layers of the ionosphere. This conclusion is confirmed here using three-dimensional numerical simulations of the flow of the stellar wind from the host star around the hot Jupiter HD 209458b, taking into account both the intrinsic magnetic field of the planet and the magnetic field in the wind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. S. Belen’kaya, Phys. Usp. 52, 765 (2009).

    Article  Google Scholar 

  2. M. Saunders, in Advances in Solar System Magnetohydrodynamics, Ed. by E. R. Priest and A. W. Hood (Cambridge Univ., Cambridge, 1991; Mir, Moscow, 1995).

  3. R. A. Murray-Clay, E. I. Chiang, and N. Murray, Astrophys. J. 693, 23 (2009).

    Article  ADS  Google Scholar 

  4. M. Mayor and D. Queloz, Nature 378, 355 (1995).

    Article  ADS  Google Scholar 

  5. D. Lai, C. Helling, and E. P. J. van den Heuvel, Astrophys. J. 721, 923 (2010).

    Article  ADS  Google Scholar 

  6. S.-L. Li, N. Miller, D. N. C. Lin, and J. J. Fortney, Nature 463, 1054 (2010).

    Article  ADS  Google Scholar 

  7. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Désert, G. E. Ballester, R. Ferlet, G. Hébrard, and M. Mayor, Nature 422, 143 (2003).

    Article  ADS  Google Scholar 

  8. A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Désert, G. E. Ballester, R. Ferlet, G. Hébrard, and M. Mayor, Astrophys. J. 676, L57 (2008).

    Article  ADS  Google Scholar 

  9. L. Ben-Jaffel, Astrophys. J. 671, L61 (2007).

    Article  ADS  Google Scholar 

  10. A. Vidal-Madjar, J.-M. Désert, A. Lecavelier des Etangs, G. Hébrard, et al., Astrophys. J. 604, L69 (2004).

    Article  ADS  Google Scholar 

  11. L. Ben-Jaffel and S. Sona Hosseini, Astrophys. J. 709, 1284 (2010).

    Article  ADS  Google Scholar 

  12. J. L. Linsky, H. Yang, K. France, C. S. Froning, J. C. Green, J. T. Stocke, and S. N. Osterman, Astrophys. J. 717, 1291 (2010).

    Article  ADS  Google Scholar 

  13. R. V. Yelle, Icarus 170, 167 (2004).

    Article  ADS  Google Scholar 

  14. A. Garcia Munoz, Planet. Space Sci. 55, 1426 (2007).

    Article  ADS  Google Scholar 

  15. T. T. Koskinen, M. J. Harris, R. V. Yelle, and P. Lavvas, Icarus 226, 1678 (2013).

    Article  ADS  Google Scholar 

  16. D. E. Ionov, V. I. Shematovich, and Ya. N. Pavlyuchenkov, Astron. Rep. 61, 387 (2017).

    Article  ADS  Google Scholar 

  17. D. Bisikalo, P. Kaygorodov, D. Ionov, V. Shematovich, H. Lammer, and L. Fossati, Astrophys. J. 764, 19 (2013).

    Article  ADS  Google Scholar 

  18. D. V. Bisikalo, P. V. Kaigorodov, D. E. Ionov, and V. I. Shematovich, Astron. Rep. 57, 715 (2013).

    Article  ADS  Google Scholar 

  19. A. A. Cherenkov, D. V. Bisikalo, and P. V. Kaigorodov, Astron. Rep. 58, 679 (2014).

    Article  ADS  Google Scholar 

  20. D. V. Bisikalo and A. A. Cherenkov, Astron. Rep. 60, 183 (2016).

    Article  ADS  Google Scholar 

  21. A. A. Cherenkov, D. V. Bisikalo, L. Fossati, and C. Mostl, Astrophys. J. 846, 31 (2017).

    Article  ADS  Google Scholar 

  22. A. A. Cherenkov, D. V. Bisikalo, and A. G. Kosovichev, Mon. Not. R. Astron. Soc. 475, 605 (2018).

    Article  ADS  Google Scholar 

  23. D. V. Bisikalo, V. I. Shematovich, A. A. Cherenkov, L. Fossati, and C. Mostl, Astrophys. J. 869, 108 (2018).

    Article  ADS  Google Scholar 

  24. A. S. Arakcheev, A. G. Zhilkin, P. V. Kaigorodov, D. V. Bisikalo, and A. G. Kosovichev, Astron. Rep. 61, 932 (2017).

    Article  ADS  Google Scholar 

  25. D. V. Bisikalo, A. S. Arakcheev, and P. V. Kaigorodov, Astron. Rep. 61, 925 (2017).

    Article  ADS  Google Scholar 

  26. W.-H. Ip, A. Kopp, and J. H. Hu, Astrophys. J. 602, L53 (2004).

    Article  ADS  Google Scholar 

  27. D. Fabbian, R. Simoniello, R. Collet, S. Criscuoli, et al., Astron. Nachricht. 338, 753 (2017).

    Article  ADS  Google Scholar 

  28. H. Lammer, M. Güdel, Y. Kulikov, I. Ribas, et al., Earth, Planets Space 64, 179 (2012).

    Article  ADS  Google Scholar 

  29. M. J. Owens and R. J. Forsyth, Liv. Rev. Solar Phys. 10, 5 (2013).

    ADS  Google Scholar 

  30. E. N. Parker, Astrophys. J. 128, 664 (1958).

    Article  ADS  Google Scholar 

  31. V. B. Baranov and K. V. Krasnobaev, Hydrodynamical Theory of Cosmic Plasma (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  32. G. L. Withbroe, Astrophys. J. 325, 442 (1988).

    Article  ADS  Google Scholar 

  33. C. T. Russell, Rep. Prog. Phys. 56, 687 (1993).

    Article  ADS  Google Scholar 

  34. L. D. Landau and E. M. Livshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Fizmatlit, Moscow, 2001; Pergamon, New York, 1984).

    Google Scholar 

  35. D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].

    Google Scholar 

  36. A. G. Zhilkin, D. V. Bisikalo, and A. A. Boyarchuk, Phys. Usp. 55, 115 (2012).

    Article  ADS  Google Scholar 

  37. T. Tanaka, J. Comput. Phys. 111, 381 (1994).

    Article  ADS  Google Scholar 

  38. K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. de Zeeuw, J. Comp. Phys. 154, 284 (1999).

    Article  ADS  Google Scholar 

  39. P. L. Roe, Lect. Notes Phys. 141, 354 (1980).

    Article  ADS  Google Scholar 

  40. P. D. Lax, Commun. Pure Appl. Math. 7, 159 (1954).

    Article  Google Scholar 

  41. R. O. Friedrihs, Commun. Pure Appl. Math. 7, 345 (1954).

    Article  Google Scholar 

  42. P. Cargo and G. Gallice, J. Comput. Phys. 136, 446 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  43. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Problems of Numerical Solution of Hyperbolic Systems of Equations (Fizmatlit, Moscow, 2001) [in Russian].

    MATH  Google Scholar 

  44. S. R. Chakravarthy and S. Osher, Am. Inst. Aeronaut. Astronaut. Preprint No. 85-0363 (AIAA, 1985).

  45. A. Dedner, F. Kemm, D. Kroner, C.-D. Munz, T. Schnitzer, and M. Wesenberg, J. Comput. Phys. 175, 645 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  46. D. Charbonneau, T. M. Brown, D. W. Latham, and M. Mayor, Astrophys. J. 529, L45 (2000).

    Article  ADS  Google Scholar 

  47. K. G. Kislyakova, M. Holmstrtsm, H. Lammer, P. Odert, and M. L. Khodachenko, Science 346, 981 (2014).

    Article  ADS  Google Scholar 

  48. D. J. Stevenson, Rep. Prog. Phys. 46, 555 (1983).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank P.V. Kaigorodov for useful discussions. The computations were carried out using the supercomputer of the National Research Center “Kurchatov Institute”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Zhilkin.

Additional information

Russian Text © The Author(s), 2019, published in Astronomicheskii Zhurnal, 2019, Vol. 96, No. 7, pp. 547–562.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhilkin, A.G., Bisikalo, D.V. On Possible Types of Magnetospheres of Hot Jupiters. Astron. Rep. 63, 550–564 (2019). https://doi.org/10.1134/S1063772919070096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772919070096

Navigation