Astronomy Reports

, Volume 63, Issue 7, pp 550–564 | Cite as

On Possible Types of Magnetospheres of Hot Jupiters

  • A. G. ZhilkinEmail author
  • D. V. Bisikalo


As a rule, the orbits of “hot Jupiter” exoplanets are located close to the Alfven point of the stellar wind of the host star. Many hot Jupiters could be in the sub-Alfven zone, where the magnetic pressure of the stellar wind exceeds the dynamical pressure. Therefore, the magnetic field in the wind should play an extremely important role in the process of stellar wind flowing around the atmosphere of a hot Jupiter. This must be taken into account when constructing theoretical models and interpreting observational data. Analyses show that many typical hot Jupiters should have shockless induced magnetospheres, which have no analogs in the solar system. Such magnetospheres are characterized first and foremost by the fact that there is no bow shock, and the magnetic barrier (ionopause) is formed by induced currents in upper layers of the ionosphere. This conclusion is confirmed here using three-dimensional numerical simulations of the flow of the stellar wind from the host star around the hot Jupiter HD 209458b, taking into account both the intrinsic magnetic field of the planet and the magnetic field in the wind.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We thank P.V. Kaigorodov for useful discussions. The computations were carried out using the supercomputer of the National Research Center “Kurchatov Institute”.


  1. 1.
    E. S. Belen’kaya, Phys. Usp. 52, 765 (2009).CrossRefGoogle Scholar
  2. 2.
    M. Saunders, in Advances in Solar System Magnetohydrodynamics, Ed. by E. R. Priest and A. W. Hood (Cambridge Univ., Cambridge, 1991; Mir, Moscow, 1995).Google Scholar
  3. 3.
    R. A. Murray-Clay, E. I. Chiang, and N. Murray, Astrophys. J. 693, 23 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    M. Mayor and D. Queloz, Nature 378, 355 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    D. Lai, C. Helling, and E. P. J. van den Heuvel, Astrophys. J. 721, 923 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    S.-L. Li, N. Miller, D. N. C. Lin, and J. J. Fortney, Nature 463, 1054 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Désert, G. E. Ballester, R. Ferlet, G. Hébrard, and M. Mayor, Nature 422, 143 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    A. Vidal-Madjar, A. Lecavelier des Etangs, J.-M. Désert, G. E. Ballester, R. Ferlet, G. Hébrard, and M. Mayor, Astrophys. J. 676, L57 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    L. Ben-Jaffel, Astrophys. J. 671, L61 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    A. Vidal-Madjar, J.-M. Désert, A. Lecavelier des Etangs, G. Hébrard, et al., Astrophys. J. 604, L69 (2004).ADSCrossRefGoogle Scholar
  11. 11.
    L. Ben-Jaffel and S. Sona Hosseini, Astrophys. J. 709, 1284 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    J. L. Linsky, H. Yang, K. France, C. S. Froning, J. C. Green, J. T. Stocke, and S. N. Osterman, Astrophys. J. 717, 1291 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    R. V. Yelle, Icarus 170, 167 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    A. Garcia Munoz, Planet. Space Sci. 55, 1426 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    T. T. Koskinen, M. J. Harris, R. V. Yelle, and P. Lavvas, Icarus 226, 1678 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    D. E. Ionov, V. I. Shematovich, and Ya. N. Pavlyuchenkov, Astron. Rep. 61, 387 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    D. Bisikalo, P. Kaygorodov, D. Ionov, V. Shematovich, H. Lammer, and L. Fossati, Astrophys. J. 764, 19 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    D. V. Bisikalo, P. V. Kaigorodov, D. E. Ionov, and V. I. Shematovich, Astron. Rep. 57, 715 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    A. A. Cherenkov, D. V. Bisikalo, and P. V. Kaigorodov, Astron. Rep. 58, 679 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    D. V. Bisikalo and A. A. Cherenkov, Astron. Rep. 60, 183 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    A. A. Cherenkov, D. V. Bisikalo, L. Fossati, and C. Mostl, Astrophys. J. 846, 31 (2017).ADSCrossRefGoogle Scholar
  22. 22.
    A. A. Cherenkov, D. V. Bisikalo, and A. G. Kosovichev, Mon. Not. R. Astron. Soc. 475, 605 (2018).ADSCrossRefGoogle Scholar
  23. 23.
    D. V. Bisikalo, V. I. Shematovich, A. A. Cherenkov, L. Fossati, and C. Mostl, Astrophys. J. 869, 108 (2018).ADSCrossRefGoogle Scholar
  24. 24.
    A. S. Arakcheev, A. G. Zhilkin, P. V. Kaigorodov, D. V. Bisikalo, and A. G. Kosovichev, Astron. Rep. 61, 932 (2017).ADSCrossRefGoogle Scholar
  25. 25.
    D. V. Bisikalo, A. S. Arakcheev, and P. V. Kaigorodov, Astron. Rep. 61, 925 (2017).ADSCrossRefGoogle Scholar
  26. 26.
    W.-H. Ip, A. Kopp, and J. H. Hu, Astrophys. J. 602, L53 (2004).ADSCrossRefGoogle Scholar
  27. 27.
    D. Fabbian, R. Simoniello, R. Collet, S. Criscuoli, et al., Astron. Nachricht. 338, 753 (2017).ADSCrossRefGoogle Scholar
  28. 28.
    H. Lammer, M. Güdel, Y. Kulikov, I. Ribas, et al., Earth, Planets Space 64, 179 (2012).ADSCrossRefGoogle Scholar
  29. 29.
    M. J. Owens and R. J. Forsyth, Liv. Rev. Solar Phys. 10, 5 (2013).ADSGoogle Scholar
  30. 30.
    E. N. Parker, Astrophys. J. 128, 664 (1958).ADSCrossRefGoogle Scholar
  31. 31.
    V. B. Baranov and K. V. Krasnobaev, Hydrodynamical Theory of Cosmic Plasma (Nauka, Moscow, 1977) [in Russian].Google Scholar
  32. 32.
    G. L. Withbroe, Astrophys. J. 325, 442 (1988).ADSCrossRefGoogle Scholar
  33. 33.
    C. T. Russell, Rep. Prog. Phys. 56, 687 (1993).ADSCrossRefGoogle Scholar
  34. 34.
    L. D. Landau and E. M. Livshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Fizmatlit, Moscow, 2001; Pergamon, New York, 1984).Google Scholar
  35. 35.
    D. V. Bisikalo, A. G. Zhilkin, and A. A. Boyarchuk, Gas Dynamics of Close Binary Stars (Fizmatlit, Moscow, 2013) [in Russian].Google Scholar
  36. 36.
    A. G. Zhilkin, D. V. Bisikalo, and A. A. Boyarchuk, Phys. Usp. 55, 115 (2012).ADSCrossRefGoogle Scholar
  37. 37.
    T. Tanaka, J. Comput. Phys. 111, 381 (1994).ADSCrossRefGoogle Scholar
  38. 38.
    K. G. Powell, P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. de Zeeuw, J. Comp. Phys. 154, 284 (1999).ADSCrossRefGoogle Scholar
  39. 39.
    P. L. Roe, Lect. Notes Phys. 141, 354 (1980).ADSCrossRefGoogle Scholar
  40. 40.
    P. D. Lax, Commun. Pure Appl. Math. 7, 159 (1954).CrossRefGoogle Scholar
  41. 41.
    R. O. Friedrihs, Commun. Pure Appl. Math. 7, 345 (1954).CrossRefGoogle Scholar
  42. 42.
    P. Cargo and G. Gallice, J. Comput. Phys. 136, 446 (1997).ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Problems of Numerical Solution of Hyperbolic Systems of Equations (Fizmatlit, Moscow, 2001) [in Russian].zbMATHGoogle Scholar
  44. 44.
    S. R. Chakravarthy and S. Osher, Am. Inst. Aeronaut. Astronaut. Preprint No. 85-0363 (AIAA, 1985).Google Scholar
  45. 45.
    A. Dedner, F. Kemm, D. Kroner, C.-D. Munz, T. Schnitzer, and M. Wesenberg, J. Comput. Phys. 175, 645 (2002).ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    D. Charbonneau, T. M. Brown, D. W. Latham, and M. Mayor, Astrophys. J. 529, L45 (2000).ADSCrossRefGoogle Scholar
  47. 47.
    K. G. Kislyakova, M. Holmstrtsm, H. Lammer, P. Odert, and M. L. Khodachenko, Science 346, 981 (2014).ADSCrossRefGoogle Scholar
  48. 48.
    D. J. Stevenson, Rep. Prog. Phys. 46, 555 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of AstronomyRussian Academy of SciencesMoscowRussia

Personalised recommendations