Skip to main content
Log in

Evolution of Stars Paired with Intermediate-Mass Black Holes

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

Under certain conditions, stars close to intermediate-mass black holes (IMBHs) can form close binary systems with these objects, in which the Roche lobe can be filled by the star and intense accretion of the star’s matter onto the IMBH is possible. Recently, accreting IMBHs have been associated with hyperluminous X-ray sources (HLXs), whose X-ray luminosities can exceed 1041 erg/s. In this paper, the evolution of star—IMBH binary systems is investigated assuming that the IMBH mainly accretes the matter of its companion star, and that the presence of gas in the vicinity of the IMBH does not appreciably affect changes in the orbit of the star. The computations take into account all processes determining the evolution of ordinary binary systems, as well as the irradiation of a star by hard radiation during the accretion of its matter onto the IMBH. The absorption of external radiation in the stellar envelope was calculated applying the same formalism that is used to calculate the opacity of the stellar matter. The computations also assumed that, if the characteristic time for the mass transfer is less than the thermal time scale of the star, there is no exchange betwween the orbital angular momentum of the system and the angular momentum of the matter flowing onto the IMBH.

Numerical simulations have shown that, under these assumptions, three types of evolution are possible for such a binary system, depending on the mass of the IMBH and the star, as well as on the star’s initial distance from the IMBH. The first type ends with the destruction of the star. For low-mass main sequence (MS) stars, only this option is realized, even in the case of large initial distances from IMBH. For massive MS stars, the star is also destroyed if the mass of the IMBH is high and the initial distance of the star from the IMBH is sufficiently small.

The second type of evolution can occur for massive MS stars, which are initially located farther from the IMBH than in the first type of evolution. In this case, the massive star fills its Roche lobe during its evolutionary expansion, after which a stage of intense mass transfer begins. It is in this phase of the evolution that the star- IMBH system can manifest itself as a HLX, when its X-ray luminosity LX exceeds 1041 erg/s for a fairly long time. Numerical simulations show that the initial mass of the donor star in systems with MBH = (103−105)M must be close to ∼10 M in this case. The characteristic duration of the HLX stage is 30 000–70 000 years. For smaller initial donor masses close to ∼5M, LX does not reach 1041 erg/s in the stage of intense mass transfer, but can exceed 1040 erg/s. The duration of this stage of evolution is 300 000–800 000 years. A characteristic feature of this second type of evolution is an increase in the orbital period of the system over time. As a result, after a period of intense mass loss, the star “retreats” inside the Roche lobe. A remnant of the star in the form of a white dwarf is left behind, and can end up fairly far from the IMBH.

The third type of evolution can occur for massive MS stars that are initially even farther from the IMBH, as well as for massive stars that are already evolved at the initial time. In this case, conservative mass exchange in the presence of intense stellar wind leads to the star moving away from the IMBH, without filling its Roche lobe at all. For massive stars with sufficiently strong stellar winds (for example, stars with masses ∼50M), the accretion rate of matter onto the IMBH in this case can reach values that are characteristic of HLXs. As in the case of the second type of evolution, the stellar remnant can remain at a fairly large distance from the IMBH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Chao, W. Bian, and K. Huang, Adv. Space Res. 42, 544 (2008).

    Article  ADS  Google Scholar 

  2. Y. Wang, T. Yamada, and Y. Taniguchi, Astrophys. J. 588, 113 (2003).

    Article  ADS  Google Scholar 

  3. C. L. Steinhardt and M. Elvis, Mon. Not. R. Astron. Soc. 402, 2637 (2010).

    Article  ADS  Google Scholar 

  4. Y. Shen, Astrophys. J. 704, 89 (2009).

    Article  ADS  Google Scholar 

  5. P. Amaro-Seoane and M. Freitag, Astrophys. J. 653, 53 (2006).

    Article  ADS  Google Scholar 

  6. S. Umbreit, J. M. Fregeau, S. Chatterjee, and F. A. Rasio, Astrophys. J. 750, 31 (2012).

    Article  ADS  Google Scholar 

  7. M. Mapelli, Mon. Not. R. Astron. Soc. 376, 131 (2007).

    Article  ADS  Google Scholar 

  8. K. Gebhardt, R. Rich, and L. Ho, Astrophys. J. 578, L41 (2002).

    Article  ADS  Google Scholar 

  9. J. Gerssen, R. P. van der Marel, K. Gebhardt, P. Guhathakurta, R. C. Peterson, and C. Pryor, Astron. J. 125, 376 (2003).

    Article  ADS  Google Scholar 

  10. Q. D. Wang, T. Yao, W. Fukui, S. Zhang, and R. Williams, Astrophys. J. 609, 113 (2004).

    Article  ADS  Google Scholar 

  11. M. Gilfanov, Prog. Theor. Phys. Suppl. 155, 49 (2004).

    Article  ADS  Google Scholar 

  12. I. Zolotukhin, N. A. Webb, O. Godet, M. Bachetti, and D. Barret, Astrophys. J. 817, 88 (2016).

    Article  ADS  Google Scholar 

  13. K. Belczynski, T. Bulik, C. L. Fryer, A. Ruiter, F. Valsecchi, J. S. Vink, and J. R. Hurley, Astrophys. J. 714, 1217 (2010).

    Article  ADS  Google Scholar 

  14. M. Volonteri and R. Perna, Mon. Not. R. Astron. Soc. 358, 913 (2005).

    Article  ADS  Google Scholar 

  15. A. V. Tutukov and A. V. Fedorova, Astron. Rep. 49, 89 (2005).

    Article  ADS  Google Scholar 

  16. A. D. Dolgov, arXiv:1712.08789 [astro-ph.CO] (2017).

  17. P. B. Ivanov, Mon. Not. R. Astron. Soc. 336, 373 (2002).

    Article  ADS  Google Scholar 

  18. P. B. Ivanov and J. C. B. Papaloizou, Astron. Astrophys. 476, 121 (2007).

    Article  ADS  Google Scholar 

  19. L. E. Strubbe and E. Quataert, in Co-Evolution of Central Black Holes and Galaxies, IAU Symp. 267, 337 (2010); arXiv:0905.3735 [astro-ph.CO] (2009).

    ADS  Google Scholar 

  20. J. Magorrian and S. Tremaine, Mon. Not. R. Astron. Soc. 309, 447 (1999).

    Article  ADS  Google Scholar 

  21. G. N. Dremova, V. V. Dremov, and A. V. Tutukov, Astron. Rep. 58, 291 (2014).

    Article  ADS  Google Scholar 

  22. A. V. Tutukov and A. V. Fedorova, Astron. Rep. 53, 410 (2009).

    Article  ADS  Google Scholar 

  23. A. V. Tutukov and A. V. Fedorova, Astron. Rep. 54, 808 (2010).

    Article  ADS  Google Scholar 

  24. A. V. Tutukov and A. V. Fedorova, Astron. Rep. 61, 663 (2017).

    Article  ADS  Google Scholar 

  25. N. Madhusudhan, S. Rappaport, Ph. Podsiadlowski, and L. Nelson, Astrophys. J. 688, 1235 (2008).

    Article  ADS  Google Scholar 

  26. L. Titarchuk and E. Seifina, Astron. Astrophys. 595, A101 (2016).

    Article  ADS  Google Scholar 

  27. D. R. Pasham, T. E. Strohmayer, and R. F. Mushotzky, Nature 513, 74 (2014).

    Article  ADS  Google Scholar 

  28. Z. Stuchlik and M. Kolos, Mon. Not. R. Astron. Soc. 451, 2575 (2015).

    Article  ADS  Google Scholar 

  29. A. D. Sutton, T. P. Roberts, J. C. Gladstone, and D. J. Walton, Mon. Not. R. Astron. Soc. 450, 787 (2015).

    Article  ADS  Google Scholar 

  30. C. M. Gutierrez and D.-S. Moon, Astrophys. J. 797, L7 (2014).

    Article  ADS  Google Scholar 

  31. S. W. Davis, R. Narayan, Y. Zhu, D. Barret, S. A. Farrell, O. Godet, M. Servillat, and N. A. Webb, Astrophys. J. 734, 111 (2011).

    Article  ADS  Google Scholar 

  32. S. A. Farrell, M. Servillat, J. Pforr, T. J. Maccarone, et al., Astrophys. J. 747, L13 (2012).

    Article  ADS  Google Scholar 

  33. E. van der Helm, S. Portegies Zwart, and O. Pols, Mon. Not. R. Astron. Soc. 455, 462 (2016).

    Article  ADS  Google Scholar 

  34. R. Soria, L. Zampieri, S. Zane, and K. Wu, Mon. Not. R. Astron. Soc. 410, 1886 (2011).

    ADS  Google Scholar 

  35. J.-P. Lasota, T. Alexander, G. Dubus, D. Barret, S. A. Farrell, N. Gehrels, O. Godet, and N. A. Webb, Astrophys. J. 735, 89 (2011).

    Article  ADS  Google Scholar 

  36. M. C. Miller, S. A. Farrell, and T. J. Maccarone, Astrophys. J. 788, 116 (2014).

    Article  ADS  Google Scholar 

  37. R. Soria, A. Musaeva, K. Wu, L. Zampieri, S. Federle, R. Urquhart, E. van der Helm, and S. Farrell, Mon. Not. R. Astron. Soc. 469, 886 (2017).

    Article  ADS  Google Scholar 

  38. K. Pavlovskii, N. Ivanova, K. Belczynski, and K. X. Van, Mon. Not. R. Astron. Soc. 465, 2092 (2017).

    Article  ADS  Google Scholar 

  39. P. Kosec, C. Pinto, A. C. Fabian, and D. J. Walton, arXiv:1710.06438[astro-ph.HE](2017).

  40. H.-J. Grimm, M. Gilfanov, and R. Sunyaev, Mon. Not. R. Astron. Soc. 339, 793 (2003).

    Article  ADS  Google Scholar 

  41. T. J. Ponman, A. J. Foster, and R. R. Ross, in Proceedings of the 23rd ESLAB Symposium on Two Topics in X-Ray Astronomy, ESASP 296, 585 (1989).

    ADS  Google Scholar 

  42. Ph. Podsiadlowski, Nature 350, 136 (1991).

    Article  ADS  Google Scholar 

  43. O. Vilhu, E. Ergma and A. Fedorova, Astron. Astrophys. 291, 842 (1994).

    ADS  Google Scholar 

  44. A. R. King, in Black Holes in Binaries and Galactic, Ed. by L. Kaper, E. P. J. van den Heuvel, and P. A. Woudt (Springer, Berlin, 2001), p. 155.

  45. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields (Fizmatgiz, Moscow, 1962; Pergamon, Oxford, 1975).

    Google Scholar 

  46. A. G. Masevich and A. V. Tutukov, Stellar Evolution: Theory and Observations (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  47. M. J. Rees, Nature 333, 523 (1988).

    Article  ADS  Google Scholar 

  48. J. K. Cannizzo, H. M. Lee, and J. Goodman, Astrophys. J. 351, 38 (1990).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Basic Research Program 12 of the Russian Academy of Sciences, “Questions of the Origin and Evolution of the Universe.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Tutukov or A. V. Fedorova.

Additional information

Russian Text © The Author(s), 2019, published in Astronomicheskii Zhurnal, 2019, Vol. 96, No. 6, pp. 472–491.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tutukov, A.V., Fedorova, A.V. Evolution of Stars Paired with Intermediate-Mass Black Holes. Astron. Rep. 63, 460–478 (2019). https://doi.org/10.1134/S1063772919060052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772919060052

Navigation