Skip to main content
Log in

Studies of Star-forming Complexes in the Galaxies NGC 628, NGC 2976, and NGC 3351

  • Published:
Astronomy Reports Aims and scope Submit manuscript

Abstract

The parameters of the radiation of interstellar matter in star-forming complexes in the high-metallicity galaxies NGC 628, NGC 2976, and NGC 3351, which have different morphological types, are analyzed. The relationship between the emission in Hα and in lines of CO and HI is considered, as well as the relationship between Hα and the emission of dust in the infrared range (IR). The fluxes and surface brightnesses in the UV and IR correlate well with the Hα emission. The HI emission also correlates well with Hα, while the correlation between the CO and Hα emission is much weaker. The ratio of the fluxes at 8 and 24 µm decreases with increasing Hα flux. This may be due to changes in the properties of the dust ensemble (a decrease in the mass fraction of polycyclic aromatic hydrocarbons) or to changing excitation conditions. Analysis of the kinematics of the CO lines shows that the CO flux grows with increasing velocity scatter ΔV when ΔV ≾ 70 km/s. Preliminary evidence for the existence of star-forming complexes with higher values of ΔV is provided, when the increase in the velocity scatter is accompanied by a decrease in the CO luminosity of the complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Kennicutt, Jr., Ann. Rev. Astron. Astrophys. 36, 189 (1998), astro-ph/9807187.

    Article  ADS  Google Scholar 

  2. H. J. Rocha-Pinto, J. Scalo, W. J. Maciel, and C. Flynn, Astron. and Astrophys. 358, 869 (2000), astro-ph/0001383.

    ADS  Google Scholar 

  3. T. P. Robitaille and B. A. Whitney, Astrophys. J. 710, L11 (2010), 1001.3672.

    Article  ADS  Google Scholar 

  4. D. Calzetti, Secular Evolution of Galaxies (Cambridge, UK: Cambridge University Press, 2013), p. 419.

    Book  Google Scholar 

  5. D. S. Wiebe, M. S. Khramtsova, O. V. Egorov, and T. A. Lozinskaya, Astron. Lett. 40, 278 (2014), 1407.3065.

    Article  ADS  Google Scholar 

  6. M. S. Khramtsova, D. S. Wiebe, T. A. Lozinskaya, and O. V. Egorov, Monthly Not. Roy. Astron. Soc. 444, 757 (2014), 1407.8307.

    Article  ADS  Google Scholar 

  7. G. J. Bendo, R. E. Miura, D. Espada, K. Nakanishi, R. J. Beswick, M. J. D’Cruze, C. Dickinson, and G. A. Fuller, Monthly Not. Roy. Astron. Soc. 472, 1239 (2017), 1707.06184.

    Article  ADS  Google Scholar 

  8. F. M. Audcent-Ross, G. R. Meurer, O. I. Wong, Z. Zheng, D. Hanish, M. A. Zwaan, J. Bland-Hawthorn, A. Elagali, M. Meyer, M. E. Putman, et al., Monthly Not. Roy. Astron. Soc. 480, 119 (2018), 1806.05875.

    Article  ADS  Google Scholar 

  9. D. Calzetti, S.-Y. Wu, S. Hong, R. C. Kennicutt, J. C. Lee, D. A. Dale, C. W. Engelbracht, L. van Zee, B. T. Draine, C.-N. Hao, et al., Astrophys. J. 714, 1256 (2010), 1003.0961.

    Article  ADS  Google Scholar 

  10. K. I. Smirnova, M. S. Murga, D. S. Wiebe, and A. M. Sobolev, Astron. Rep. 61, 646 (2017).

    Article  ADS  Google Scholar 

  11. F. Walter, E. Brinks, W. J. G. de Blok, F. Bigiel, R. C. Kennicutt, Jr., M. D. Thornley, and A. Leroy, Astron. J. 136, 2563–2647 (2008), 0810.2125.

    Article  ADS  Google Scholar 

  12. R. C. Kennicutt, D. Calzetti, G. Aniano, P. Appleton, L. Armus, P. Beirão, A. D. Bolatto, B. Brandl, A. Crocker, K. Croxall, et al., Proc. Astron. Soc. Pacif. 123, 1347 (2011), 1111.4438.

    Article  ADS  Google Scholar 

  13. R. C. Kennicutt, Jr., L. Armus, G. Bendo, D. Calzetti, D. A. Dale, B. T. Draine, C. W. Engelbracht, K. D. Gordon, A. D. Grauer, G. Helou, et al., Proc. Astron. Soc. Pacif. 115, 928 (2003), astro-ph/0305437.

    Article  ADS  Google Scholar 

  14. A. K. Leroy, F. Walter, F. Bigiel, A. Usero, A. Weiss, E. Brinks, W. J. G. de Blok, R. C. Kennicutt, K.-F. Schuster, C. Kramer, et al., Astron. J. 137, 4670 (2009), 0905.4742.

    Article  ADS  Google Scholar 

  15. B. T. Draine and A. Li, Astrophys. J. 657, 810 (2007), astro-ph/0608003.

    Article  ADS  Google Scholar 

  16. A. Caldu-Primo, A. Schruba, F. Walter, A. Leroy, K. Sandstrom, W. J. G. de Blok, R. Ianjamasimanana, and K. M. Mogotsi, Astron. J. 146, 150 (2013), 1309.6324.

    Article  ADS  Google Scholar 

  17. J. Pety, E. Schinnerer, A. K. Leroy, A. Hughes, S. E. Meidt, D. Colombo, G. Dumas, S. Garcia-Burillo, K. F. Schuster, C. Kramer, et al., Astrophys. J. 779, 43 (2013), 1304.1396.

    Article  ADS  Google Scholar 

  18. K. M. Mogotsi, W. J. G. de Blok, A. Caldú-Primo, F. Walter, R. Ianjamasimanana, and A. K. Leroy, Astron. J. 151, 15 (2016), 1511.06006.

    Article  ADS  Google Scholar 

  19. D. A. Swartz, M. Yukita, A. F. Tennant, R. Soria, and K. K. Ghosh, Astrophys. J. 647, 1030 (2006).

    Article  ADS  Google Scholar 

  20. D. M. Elmegreen, F. R. Chromey, M. Santos, and D. Marshall, Astron. J. 114, 1850 (1997).

    Article  ADS  Google Scholar 

  21. B. F. Williams, J. J. Dalcanton, A. Stilp, K. M. Gilbert, R. Roškar, A. C. Seth, D. Weisz, A. Dolphin, S. M. Gogarten, E. Skillman, et al., Astrophys. J. 709, 135 (2010), 0911.4121.

    Article  ADS  Google Scholar 

  22. A. S. Gusev and Y. N. Efremov, Monthly Not. Roy. Astron. Soc. 434, 313 (2013), 1306.1731.

    Article  ADS  Google Scholar 

  23. P. Sánchez-Blázquez, F. Rosales-Ortega, A. Diaz, and S. F. Sánchez, Monthly Not. Roy. Astron. Soc. 437, 1534 (2014), 1310.4804.

    Article  ADS  Google Scholar 

  24. R. C. Kennicutt, Jr., J. C. Lee, J. G. Funes, S. Sakai, and S. Akiyama, Astrophys. J. Sup. Ser. 178, 247 (2008), 0807.2035.

    Article  ADS  Google Scholar 

  25. D. C. Martin, J. Fanson, D. Schiminovich, P. Morrissey, P. G. Friedman, T. A. Barlow, T. Conrow, R. Grange, P. N. Jelinsky, B. Milliard, et al., Astrophys. J. Lett. 619, L1 (2005), astro-ph/0411302.

    Article  ADS  Google Scholar 

  26. G. Aniano, B. T. Draine, K. D. Gordon, and K. Sandstrom, Proc. Astron. Soc. Pacif. 123, 1218 (2011), 1106.5065.

    Article  ADS  Google Scholar 

  27. R. B. Tully, H. M. Courtois, and J. G. Sorce, Astron. J. 152, 50 (2016).

    Article  ADS  Google Scholar 

  28. M. S. Khramtsova, D. S. Wiebe, P. A. Boley, and Y. N. Pavlyuchenkov, Monthly Not. Roy. Astron. Soc. 431, 2006 (2013), 1302.4837.

    Article  ADS  Google Scholar 

  29. R. B. Larson, Monthly Not. Roy. Astron. Soc. 194, 809 (1981).

    Article  ADS  Google Scholar 

  30. A. S. Gusev, Monthly Not. Roy. Astron. Soc. 442, 3711 (2014), 1406.0661.

    Article  ADS  Google Scholar 

  31. Q. Li, J. C. Tan, D. Christie, T. G. Bisbas, and B. Wu, Proc. Astron. Soc. Jap. 70, S56 (2018), 1706.03764.

    ADS  Google Scholar 

  32. M. R. Krumholz, B. Burkhart, J. C. Forbes, and R. M. Crocker, Monthly Not. Roy. Astron. Soc. 477, 2716 (2018), 1706.00106.

    Article  ADS  Google Scholar 

  33. J.-G. Kim, W.-T. Kim, and E. C. Ostriker, Astrophys. J. 859, 68 (2018), 1804.04664.

    Article  ADS  Google Scholar 

  34. A. V. Moiseev, A. V. Tikhonov, and A. Klypin, Monthly Not. Roy. Astron. Soc. 449, 3568 (2015), 1405.5731.

    Article  ADS  Google Scholar 

  35. D. A. Frail and G. F. Mitchell, Astrophys. J. 508, 690 (1998), astro-ph/9807011.

    Article  ADS  Google Scholar 

  36. R. G. Arendt, E. Dwek, W. P. Blair, P. Ghavamian, U. Hwang, K. S. Long, R. Petre, J. Rho, and P. F. Winkler, Astrophys. J. 725, 585 (2010).

    Article  ADS  Google Scholar 

  37. A. Tappe, J. Rho, and W. T. Reach, Astrophys. J. 653, 267 (2006), astro-ph/0609133.

    Article  ADS  Google Scholar 

  38. A. Tappe, J. Rho, C. Boersma, and E. R. Micelotta, Astrophys. J. 754, 132 (2012).

    Article  ADS  Google Scholar 

  39. E. R. Micelotta, A. P. Jones, and A. G. G. M. Tielens, Astron. and Astrophys. 510, A36 (2010), 0910.2461.

    Article  ADS  Google Scholar 

  40. M. S. Murga, S. A. Khoperskov, and D. S. Wiebe, Astron. Rep. 60, 669 (2016), 1612.00420.

    Article  ADS  Google Scholar 

  41. J. D. Slavin, R. K. Smith, A. Foster, H. D. Winter, J. C. Raymond, P. O. Slane, and H. Yamaguchi, Astrophys. J. 846, 77 (2017), 1708.02646.

    Article  ADS  Google Scholar 

  42. J. Melnick, E. Telles, V. Bordalo, R. Chavez, D. Fernandez-Arenas, E. Terlevich, R. Terlevich, F. Bresolin, M. Plionis, and S. Basilakos, Astron. and Astrophys. 599, A76 (2017), 1612.01974.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank the referee for important comments and useful improvements of the quality of the manuscript. This study was based in part on observational data obtained by the Spitzer Space Telescope, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. The National Radio Astronomy Observatory is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc. This work is also based on observations carried out with the IRAM NOEMA Interferometer [30-m telescope]. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. I. Smirnova or D. S. Wiebe.

Additional information

Russian Text © The Author(s), 2019, published in Astronomicheskii Zhurnal, 2019, Vol. 96, No. 6, pp. 456–471.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, K.I., Wiebe, D.S. Studies of Star-forming Complexes in the Galaxies NGC 628, NGC 2976, and NGC 3351. Astron. Rep. 63, 445–459 (2019). https://doi.org/10.1134/S1063772919060040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063772919060040

Navigation